Updated: May 14, 2015 Version 1 ## **NASA Carbon Monitoring System (CMS) Short Data & Products Fact Sheet** for 2012, 2013, and 2014 Projects [ABRIDGED VERSION, see Full Fact Sheet for comprehensive information] Listed first in the order of the most recent award year (2014) to the least recent award year (2012), then listed alphabetically according to PI's last name | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | |---|---|--|-----------------------------|---|---|---|---|---| | Andrews-03 [2014] Regional Inverse Modeling in North and South America for the NASA Carbon Monitoring System | - Quantify fluxes at scales relevant for MRV using strategies that incorporate diverse carbon dioxide observations. | Measurement sampling footprints | North and South
Americas | 2007-2010; 1
July - 20
August 2012;
2015 | 1° latitude x 1° longitude; 0.1° latitude x 0.1° longitude for subdomain centered on measurement location | Hourly | - MRV, REDD+ - GHG emissions inventory - Cap-and-trade program - Land management | EPA, USDA, NASA (GOSAT, ACOS, & OCO-2 *Chris O'Dell* science teams), and stakeholders of any emissions verification project, other atmospheric transport modelers and inverse modelers | | Andrews-03 [2014] Regional Inverse Modeling in North and South America for the NASA Carbon Monitoring System | - Quantify fluxes at scales relevant for MRV using strategies that incorporate diverse carbon dioxide observations. | CO2 flux estimates. | North and South
Americas | 2007-2010; 1
July - 20
August 2012;
2015 | 1° latitude x 1°
longitude | 3-hourly (will
be aggregated
to coarser
resolution for
reporting) | - MRV, REDD+
- GHG emissions
inventory
- Cap-and-trade
program
- Land management | EPA, USDA, NASA (GOSAT, ACOS, & OCO-2 *Chris O'Dell* science teams), and stakeholders of any emissions verification project | | Andrews-03 [2014] Regional Inverse Modeling in North and South America for the NASA Carbon Monitoring System | - Quantify uncertainties of CMS products. | Uncertainty
evaluations of
CMS products. | North and South
Americas | 2007-2010; 1
July - 20
August 2012;
2015 | 1° latitude x 1°
longitude | 3-hourly (will
be aggregated
to coarser
resolution for
reporting) | - MRV, REDD+
- GHG emissions
inventory
- Cap-and-trade
program
- Land management | EPA, USDA, NASA (GOSAT, ACOS, & OCO-2 *Chris O'Dell* science teams), and stakeholders of any emissions verification project | | Baker-01 [2014] A Global High-Resolution Atmospheric Data Assimilation System for Carbon Flux Monitoring and Verification | - Provide carbon flux estimates at sub-degree resolution using a new inversion method. | CO2 flux estimates. | Global | 2012-2016 | 2/3° x 5/6° (lat/lon) | Hourly, daily,
weekly | - MRV - GHG emissions inventory - Global carbon budget calculations - Land management | CMS flux teams, NOAA Carbon Tracker,
EPA, DOE, Group on Earth Observations
(GEO) | | Baker-01 [2014] A Global High-Resolution Atmospheric Data Assimilation System for Carbon Flux Monitoring and Verification | - Quantify carbon flux
uncertainties at sub-degree
resolution by producing a high-
rank covariance matrix. | CO2 flux estimate uncertainties. | Global | 2012-2016 | 2/3° x 5/6° (lat/lon) | Hourly, daily,
weekly | - MRV - GHG emissions inventory - Global carbon budget calculations - Land management | CMS flux teams, NOAA Carbon Tracker,
EPA, DOE, Group on Earth Observations
(GEO) | | Bowman-02
[2014]
Continuation of the CMS-
Flux Pilot Project | - Develop a comprehensive ("bigpicture") framework that incorporates all anthropogenic, terrestrial, oceanic, and atmospheric fluxes Provide observationally-constrained, and spatially-explicit "bottom-up" estimates of global carbon cycle fluxes using the CMS-Flux system balanced against the observed atmospheric growth rate from 2010-2015 Attribute the variability of atmospheric CO2 to spatially-resolved fluxes from 2010-2015 Using CO measurements, relate carbon fluxes to combustion sources. | Total carbon fluxes | Global | 2010-2011
(2010-2015
anticipated) | 4° x 5° | Monthly | - GHG emissions
inventory
- Land management
- Global carbon
budget calculations | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Website: o | carbon.nasa.gov Email: | cms_applications@ | | Updated: M | ay 14, 2015 | Version 1 | Page 2/27 | | |---|---|---|--|-------------|--|---|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Bowman-02
[2014]
Continuation of the CMS-
Flux Pilot Project | - Provide observationally-
constrained, and spatially-explicit
"bottom-up" estimates of global
oceanic carbon fluxes using the
CMS-Flux system balanced
against the observed atmospheric
growth rate from 2010-2015. | Oceanic carbon (pCO2) fluxes | Global | 2010-2015 | 18 km | 3-hourly | Ocean acidification mitigation Land management (riverine export) | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-02
[2014]
Continuation of the CMS-
Flux Pilot Project | - Provide observationally-
constrained, and spatially-explicit
"bottom-up" estimates of global
terrestrial ecosystem carbon
fluxes using the CMS-Flux system
balanced against the observed
atmospheric growth rate from
2010-2015. | Terrestrial carbon fluxes | Global | 2010-2015 | 0.5° | 3-hourly | - GHG emissions inventory - Land management - Global carbon budget calculations | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-02
[2014]
Continuation of the CMS-
Flux Pilot Project | - Provide observationally-
constrained, and spatially-explicit
"bottom-up" estimates of global
terrestrial ecosystem carbon
fluxes using the CMS-Flux system
balanced against the observed
atmospheric growth rate from
2010-2015. | Anthropogenic carbon fluxes | Global | 1997-2015 | 0.1° | Hourly | - GHG emissions inventory | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-02
[2014]
Continuation of the CMS-
Flux Pilot Project | - Quantify uncertainties. | Associated uncertainties. | Global | 2010-2015 | 4° x 5° | Monthly | - Global carbon
budget calculations | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-02
[2014]
Continuation of the CMS-
Flux Pilot Project | Provide observationally-
constrained and spatially explicit
estimates of the uncertainty in
estimates of fossil-fuel CO ₂
emissions. Provide a comparison
of existing gridded data products. | Spatially explicit measure of uncertainty in fossil-fuel emissions. Compatible data file on existing gridded data | U.S. as a test
case, eventually
global | 2010-2015 |
Resolution as
desired, but
focused on 0.1 and
1.0 degrees | Annually, finer
resolution as
emissions
estimates
become
available | - GHG emissions inventory | Climate and Earth Science modeling groups, CO2 emissions estimators, *Gurney, Oda, Andres* | | Fatovinbo-01
[2014]
Total Carbon Estimation in
African Mangroves and
Coastal Wetlands in
Preparation for REDD and
Blue Carbon Credits | Develop a Mangrove Total Carbon Monitoring System in Gabon, Tanzania, and Mozambique. Provide estimates of forest biomass using a suite of COTS datasets. | Mangrove forest biomass estimates. | Gabon, Tanzania,
and Mozambique | 1990-2015 | 12 m | Single Product
2013/2014 | - MRV, REDD+
- Forest inventory
- Land management
- Watershed
protection plans | Forestry departments of Gabon, Tanzania, and Mozambique, WWF *Aurelie Shapiro*, USAID, USFS, Conservation International *Emily Pidgeon*, UNEP-WCMC, University Eduardo Mondlane | | Fatoyinbo-01
[2014]
Total Carbon Estimation in
African Mangroves and
Coastal Wetlands in
Preparation for REDD and
Blue Carbon Credits | - Provide mangrove forest extent maps using a suite of COTS datasets. | Mangrove forest extent maps. | Gabon, Tanzania,
and Mozambique | 1990-2015 | 30 m | Single Product
2013/2014 | - MRV, REDD+
- Forest inventory
- Land management
- Watershed
protection plans | Forestry departments of Gabon,
Tanzania, and Mozambique, WWF
Aurelie Shapiro, USAID, USFS,
Conservation International *Emily
Pidgeon*, UNEP-WCMC, University
Eduardo Mondlane | | Fatoyinbo-01
[2014]
Total Carbon Estimation in
African Mangroves and
Coastal Wetlands in
Preparation for REDD and
Blue Carbon Credits | - Develop a time series of
mangrove change in all three
countries from 1990 to present
day. | Mangrove forest cover change maps. | Gabon, Tanzania,
and Mozambique | 1990-2015 | 30 m | Annually 1990-
2014 | - MRV, REDD+
- Forest inventory
- Land management
- Watershed
protection plans | Forestry departments of Gabon, Tanzania, and Mozambique, WWF *Aurelie Shapiro*, USAID, USFS, Conservation International *Emily Pidgeon*, UNEP-WCMC, University Eduardo Mondlane | | Ganguly-01 [2014] Reducing Uncertainties in Satellite-Derived Forest Aboveground Biomass Estimates Using a High Resolution Forest Cover Map | Provide tree cover estimate for the continental U.S. Reduce uncertainties in the aboveground (AGB) biomass estimation. | Tree cover maps. | CONUS | 2010-2012 | 1 m | Yearly | - Forest inventory
- Land management,
Fire Management,
Land Cover Change | CMS land biomass product developers,
USFS | | Website: o | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 3/27 | |---|--|--|--|---|--|---|--|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Ganguly-01 [2014] Reducing Uncertainties in Satellite-Derived Forest Aboveground Biomass Estimates Using a High Resolution Forest Cover Map | Provide aboveground biomass estimates. Compare differences between pixel-level AGB density and total AGB at aggregated scales like ecoregions and counties. | Aboveground
biomass at
Landsat scale and
Lidar-derived
biomass maps. | CONUS | 2000-2012 | 30 m | Yearly | - Forest inventory
- Land management,
Fire Management | CMS land biomass product developers,
USFS | | Greenberg-01
[2014]
Reducing Uncertainties in
Estimating California's
Forest Carbon Stocks | Create a prototype carbon
monitoring system for the state of
California. | Mean tree-
sequestered
aboveground
biomass
estimates. | California | 2005-2015 | 30 m | Mixture: Lidar
and WV-2, 1-
off; Landsat:
16 day | - Fire management
- Forest inventory
- Land management | USDA FS *Carlos Ramirez* | | Greenberg-01 [2014] Reducing Uncertainties in Estimating California's Forest Carbon Stocks | - Quantify uncertainties. | Spatially explicit uncertainties. | California | 2005-2015 | 30 m | Mixture: Lidar
and WV-2, 1-
off; Landsat:
16 day | - Fire management
- Forest inventory
- Land management | USDA FS *Carlos Ramirez* | | Hudak-01 [2014] Prototyping a Methodology to Develop Regional-Scale Forest Aboveground Biomass Carbon Maps Predicted from Landsat Time Series, Trained from Field and Lidar Data Collections, and Independently Validated with FIA Data | - Develop a prototype carbon monitoring system for northwestern USA that can be replicated and applied in other parts of the U.S. and internationally. | Aboveground biomass maps. | Northwestern
U.S. (from
temperate
rainforest to cold
desert) | 2002-2012 | 30 m nominally, 90 m means and standard deviations | Annual | - MRV
- Forest inventory
- Land management | Private and public forest managers (i.e. USFS), carbon assessors | | Hudak-01 [2014] Prototyping a Methodology to Develop Regional-Scale Forest Aboveground Biomass Carbon Maps Predicted from Landsat Time Series, Trained from Field and Lidar Data Collections, and Independently Validated with FIA Data | - Maintain a transparent record of bias corrections at the county level. | Estimates of bias between biomass predictions and FIA observations summarized for the representative vegetation types. | Northwestern
U.S. (from
temperate
rainforest to cold
desert) | 2002-2012 | county | Annual | - MRV
- Forest inventory
- Land management | Private and public forest managers (i.e. USFS), carbon assessors | | Hurtt-03 [2014] High Resolution Carbon Monitoring and Modeling: Continuing Prototype Development and Deployment | - Develop a framework for estimating local-scale, high-resolution carbon stocks and future carbon sequestration potential using remote sensing and ecosystem modeling linked with existing field observation systems such as the USFS Forest Inventory. | Canopy height and forest/non-forest maps. | Pennsylvania,
Delaware, and
Maryland | Variable
based on
Lidar
acquisition
dates (2004-
2015) | 1 m and 30 m | Once | - MRV
- Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
Delaware DNR, Pennsylvania DNR,
DOE, EPA, REGGI, private landowners,
county GIS departments, national and
global entities that want to validate top
down products | | Hurtt-03 [2014] High Resolution Carbon Monitoring and Modeling: Continuing Prototype Development and Deployment | - Provide wall-to-wall, high-
resolution estimates of carbon
stocks and their uncertainties.
- Develop and test methods for
monitoring changes in carbon
stocks through time using repeat
Lidar data, satellite imagery, and
forest inventory data, and remote
sensing driven mechanistic
modeling. | Aboveground biomass with associated uncertainty maps. | Pennsylvania,
Delaware, and
Maryland | Variable
based on
Lidar
acquisition
dates (2004-
2015) | 30 m | Once | - MRV
- Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
Delaware DNR, Pennsylvania DNR,
DOE, EPA, REGGI, private landowners,
county GIS departments, national and
global entities that want to validate top
down products | | Hurtt-03
[2014]
High Resolution Carbon
Monitoring and Modeling:
Continuing Prototype
Development and | Initialize and run a prognostic
ecosystem model for carbon at
high-spatial resolution over
multiple eastern states. | Prognostic ecosystem model (ED) based maps of carbon stocks and flux. | Pennsylvania,
Delaware, and
Maryland | Variable
based on
Lidar
acquisition
dates (2004-
2015) | 90 m | Once | - MRV
- Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
Delaware DNR, Pennsylvania DNR,
DOE, EPA, REGGI, private landowners,
county GIS departments, national and
global entities that want to validate top | | Website: o | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 4/27 | |--|---|---|--
---|-------------------------|-----------------------|---|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Deployment Hurtt-03 [2014] High Resolution Carbon Monitoring and Modeling: Continuing Prototype Development and Deployment | - Predict carbon sequestration potential under land use and climate change scenarios using ecosystem modeling (ED). | ED based maps of carbon sequestration potential. | Pennsylvania,
Delaware, and
Maryland | Variable
based on
Lidar
acquisition
dates (2004-
2015) | 90 m | Once | - MRV
- Land management
- Forest inventory | down products Maryland Department of Natural Resources (DNR) Forest Service, Delaware DNR, Pennsylvania DNR, DOE, EPA, REGGI, private landowners, county GIS departments, national and global entities that want to validate top down products | | Hurtt-03 [2014] High Resolution Carbon Monitoring and Modeling: Continuing Prototype Development and Deployment | - Produce mapped changes in
above ground biomass for
Maryland | Maps of aboveground biomass change | Maryland | Variable
based on
Lidar
acquisition
dates (2004-
2015) | 30 m | Once | - MRV
- Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
Delaware DNR, Pennsylvania DNR,
DOE, EPA, REGGI, private landowners,
county GIS departments, national and
global entities that want to validate top
down products | | Hurtt-03
[2014]
High Resolution Carbon
Monitoring and Modeling:
Continuing Prototype
Development and
Deployment | - Produce estimates of biomass accumulation on afforestation sites | High-density canopy maps of afforestation areas, along with estimates of biomass sequestered since project initiation | Maryland and
Pennsylvania | Variable
based on
Lidar
acquisition
dates (2004-
2015) | 30 m | Once | - MRV
- Land management
- Forest inventory | Afforestation projects | | Jacob-02
[2014]
High-Resolution
Constraints on North
American and Global
Methane Sources Using
Satellites | - Provide methane emissions estimates at high resolution on regional scale. | Anthropogenic and natural methane emissions estimates. | North America | 2009-2015 | 0.25° x 0.33° | Yearly | - MRV - GHG emissions inventory - Watershed protection plans - Fire management - Air quality protection - Land management | Air quality agencies at both state and national levels (e.g. EPA, lowa Department of Natural Resources), industry groups (e.g. American Petroleum Institute), US State Department | | Jacob-02
[2014]
High-Resolution
Constraints on North
American and Global
Methane Sources Using
Satellites | - Provide methane emissions estimates at high resolution on global scale. | Anthropogenic and natural methane emissions estimates. | Global | 2009-2015 | 4° x 5° | Yearly | - MRV - GHG emissions inventory - Watershed protection plans - Fire management - Air quality protection - Land management | Air quality agencies at both state and national levels (e.g. EPA, lowa Department of Natural Resources), industry groups (e.g. American Petroleum Institute), US State Department | | Lohrenz-05 [2014] An Integrated Terrestrial- Coastal Ocean Observation and Modeling Framework for Carbon Management Decision Support | - Characterize and quantify land-
ocean carbon fluxes. | Estimates of land-
ocean fluxes of
organic and
inorganic carbon,
nitrogen, and
water | Southeastern
U.S. and South
Atlantic Bight | 1904-present,
present-2099
(projected) | 5 arc-minute (or 0.08°) | Monthly | - MRV - Land management - Watershed protection plans - Ocean acidification mitigation and carbon management | USDA, EPA (Mississippi River/Gulf of
Mexico Watershed Nutrient Task Force),
NOAA, USGS, US Global Change
Research Program, CMS terrestrial
flux teams | | Lohrenz-05 [2014] An Integrated Terrestrial- Coastal Ocean Observation and Modeling Framework for Carbon Management Decision Support | - Characterize and quantify ocean-atmosphere carbon fluxes. | Estimates/maps
of ocean-
atmosphere
fluxes of carbon
dioxide | Southeastern
U.S. and South
Atlantic Bight | 1904-present,
present-2099
(projected) | 5 km | Monthly | - Ocean acidification
mitigation and carbon
management | NOAA, US Global Change Research
Program | | Lohrenz-05 [2014] An Integrated Terrestrial- Coastal Ocean Observation and Modeling Framework for Carbon Management Decision Support | - Characterize and quantify land-
atmosphere carbon fluxes. | Estimates/maps of land-
atmosphere fluxes of carbon dioxide and methane. | Southeastern
U.S. and South
Atlantic Bight | 1904-present,
present-2099
(projected) | 5 arc-minute (or 0.08°) | Monthly | - MRV - Land management - Watershed protection plans - Ocean acidification mitigation and carbon management | USDA, EPA (Mississippi River/Gulf of
Mexico Watershed Nutrient Task Force),
NOAA, USGS, US Global Change
Research Program, CMS terrestrial
flux teams | | Website: o | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 5/27 | |--|--|--|---|--|-----------------------------------|-----------------------|---|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Lohrenz-05 [2014] An Integrated Terrestrial- Coastal Ocean Observation and Modeling Framework for Carbon Management Decision Support | - Characterize and quantify
terrestrial carbon storage in
biomass. | Estimates/maps of terrestrial carbon stocks. | Southeastern
U.S. and South
Atlantic Bight | 1904-present,
present-2099
(projected) | 5 arc-minute (or 0.08°) | Monthly | - MRV - Land management - Watershed protection plans - Carbon management | USDA, EPA (Mississippi River/Gulf of
Mexico Watershed Nutrient Task Force),
NOAA, USGS, US Global Change
Research Program, CMS terrestrial
flux teams | | Lohrenz-05 [2014] An Integrated Terrestrial- Coastal Ocean Observation and Modeling Framework for Carbon Management Decision Support | - Quantify uncertainties. | Associated uncertainties. | Southeastern
U.S. and South
Atlantic Bight | 1904-present,
present-2099
(projected) | 5 arc-minute (or 0.08°) | Monthly | - MRV - Land management - Watershed protection plans - Ocean acidification mitigation and carbon management | USDA, EPA (Mississippi River/Gulf of
Mexico Watershed Nutrient Task Force),
NOAA, USGS, US Global Change
Research Program, CMS terrestrial
flux teams | | Lohrenz-05 [2014] An Integrated Terrestrial- Coastal Ocean Observation and Modeling Framework for Carbon Management Decision Support | - Facilitate access to developed georeferenced carbon data products to support operational needs of stakeholders. | Geospatial portals
for sharing
developed carbon
data products. | N/A | N/A | N/A | N/A | - MRV - Land management - Watershed protection plans - Ocean acidification mitigation and carbon management | USDA, EPA (Mississippi River/Gulf of
Mexico Watershed Nutrient Task Force),
NOAA, USGS, US Global Change
Research Program, CMS terrestrial
flux teams | | Morton-01
[2014]
Long-Term Carbon
Consequences of Amazon
Forest Degradation | - Quantify the long-term changes in forest carbon stock as a function of degradation history, frequency, and intensity. | Airborne Lidar
data for intact,
degraded, and
secondary forest
types | 3 frontier forests
in the Brazilian
and Peruvian
Amazon:
Santarém, Pará,
Brazil (old frontier
forest); Feliz
Natal, Mato
Grosso, Brazil
(established); and
Colonel Portillo,
Ucayali, Peru
(young). | 2014-2015 | 1m horizontal products (CHM, DTM) | N/A | - MRV, REDD+ - Forest inventory - GHG emissions inventory - Land management | INPE, Embrapa, USAID, US State
Department, global carbon cycle
community | | Morton-01
[2014]
Long-Term Carbon
Consequences of Amazon
Forest Degradation | - Generate estimates of annual forest carbon emissions for each frontier landscape, including deforestation, degradation, and secondary forest dynamics. | Analysis of secondary forest dynamics. | 3 frontier forests in the Brazilian and Peruvian Amazon: Santarém, Pará, Brazil (old frontier forest); Feliz Natal, Mato Grosso, Brazil (established); and Colonel Portillo,
Ucayali, Peru (young). | 1985-2014 | N/A | Annually | - MRV, REDD+ - Forest inventory - GHG emissions inventory - Land management | INPE, Embrapa, USAID, US State
Department, global carbon cycle
community | | Morton-01
[2014]
Long-Term Carbon
Consequences of Amazon
Forest Degradation | - Generate lidar-based models of
aboveground forest biomass for
intact and degraded forest types. | Lidar-biomass
models for intact,
degraded, and
secondary
forests. | 3 frontier forests
in the Brazilian
and Peruvian
Amazon:
Santarém, Pará,
Brazil (old frontier
forest); Feliz
Natal, Mato
Grosso, Brazil
(established); and
Colonel Portillo,
Ucayali, Peru
(young). | 2014-2016 | N/A | N/A | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | INPE, Embrapa, USAID, US State
Department, global carbon cycle
community | | | Website: carbon.nasa.gov Email: cms_applications@cce.nasa.gov | | | | | | Version 1 | Page 6/27 | |---|--|--|---|-------------|--------------------|-----------------------|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Morton-01
[2014]
Long-Term Carbon
Consequences of Amazon
Forest Degradation | - Generate estimates of annual forest carbon emissions for each frontier landscape, including deforestation, degradation, and secondary forest dynamics. | Estimates of annual forest carbon emissions for each frontier landscape | 3 frontier forests
in the Brazilian
and Peruvian
Amazon:
Santarém, Pará,
Brazil (old frontier
forest); Feliz
Natal, Mato
Grosso, Brazil
(established); and
Colonel Portillo,
Ucayali, Peru
(young). | 1985-2014 | N/A | Annually | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | INPE, Embrapa, USAID, US State
Department, global carbon cycle
community | | Morton-01
[2014]
Long-Term Carbon
Consequences of Amazon
Forest Degradation | - Estimate annual rates of
deforestation (intact, degraded,
secondary forests) and forest
degradation (logging and fire). | Maps of annual deforestation, forest degradation, and secondary forest dynamics. | 3 frontier forests
in the Brazilian
and Peruvian
Amazon:
Santarém, Pará,
Brazil (old frontier
forest); Feliz
Natal, Mato
Grosso, Brazil
(established); and
Colonel Portillo,
Ucayali, Peru
(young). | 1985-2014 | 30 m | Annually | - MRV, REDD+ - Forest inventory - GHG emissions inventory - Land management | INPE, Embrapa, USAID, US State
Department, global carbon cycle
community | | Ott-01 [2014] GEOS-Carb II: Delivering Carbon Flux and Concentration Products Based on the GEOS Modeling System | - Provide ocean-atmosphere flux estimates Quantify uncertainties. | Maps of observationally constrained ocean-atmosphere fluxes and associated uncertainties. | Global | 2003-2016 | 0.5° x 0.5° | Monthly | - Global carbon
budget calculations
- Ocean changes | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Ott-01 [2014] [E014] [E05-Carb II: Delivering Carbon Flux and Concentration Products Based on the GEOS Modeling System | Provide land-atmosphere biospheric flux estimates. Quantify uncertainties. | Maps of observationally constrained atmosphere-land biosphere fluxes and associated uncertainties. | Global | 2003-2016 | 0.5° x 0.5° | Monthly | - Global carbon
budget calculations
- Fire management
- Land management
- Air quality protection | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Ott-01 [2014] GEOS-Carb II: Delivering Carbon Flux and Concentration Products Based on the GEOS Modeling System | - Quantify uncertainties of fossil fuel emissions estimates | Estimates of uncertainty in fossil fuel emissions | Global | 2003-2016 | 0.5° x 0.5° | Yearly | - GHG emissions inventory - Global carbon budget calculations | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Ott-01
[2014]
GEOS-Carb II: Delivering
Carbon Flux and
Concentration Products
Based on the GEOS
Modeling System | - Provide simulated atmospheric
CO and CO2 concentrations and
associated uncertainties | Estimates of atmospheric CO and CO2 including uncertainty due to flux and transport errors | Global | 2003-2016 | 0.5° x 0.5° | Daily | - GHG emissions
inventory
- Global carbon
budget calculations | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Ott-01 [2014] GEOS-Carb II: Delivering Carbon Flux and Concentration Products Based on the GEOS Modeling System | - Provide CO and CO2 reanalysis | High-resolution global atmospheric CO and CO2 concentration reanalyses | Global | 2009-2016 | 0.5° x 0.5° | Daily | - GHG emissions inventory - Global carbon budget calculations | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Website: c | Website: carbon.nasa.gov Email: cms_applications@cce.nasa.gov | | | T | Updated: M | ay 14, 2015 | Version 1 | Page 7/27 | |--|--|--|---|-------------|-------------------------------------|-----------------------|---|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Ott-01
[2014]
GEOS-Carb II: Delivering
Carbon Flux and
Concentration Products
Based on the GEOS
Modeling System | - Global inversion flux estimates | Estimates of terrestrial, oceanic carbon flux based on inverse model calculations and GOSAT/OCO-2 observations | Global | 2009-2013 | 100+ regions, 3° x
3.75° lat/lon | Monthly | - GHG emissions
inventory
- Global carbon
budget calculations | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Walker-W-01 [2014] Direct Measurement of Aboveground Carbon Dynamics in Support of Large-Area CMS Development | - Quantify the certainty with which extensive field, off-the-shelf airborne Lidar, and MODIS satellite data can be used synergistically to estimate wall-to-wall changes in aboveground carbon density. | Maps of wall-to-
wall changes in
aboveground
carbon density. | Mexico | 2001-2015 | 500 m | Annual | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | USAID, Chiapas and Campeche jurisdictional governments | | Walker-W-01 [2014] Direct Measurement of Aboveground Carbon Dynamics in Support of Large-Area CMS Development | - Quantify the certainty with which extensive field, off-the-shelf airborne Lidar, and VIIRS satellite data can be used synergistically to estimate wall-to-wall changes in aboveground carbon density. | Maps of wall-to-
wall changes in
aboveground
carbon density. | Mexico | 2012-2016 | 375 m | Annual | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | USAID, Chiapas and Campeche jurisdictional governments | | Walker-W-01 [2014] Direct Measurement of Aboveground Carbon Dynamics in Support of Large-Area CMS Development | - Quantify the certainty with which extensive field, off-the-shelf airborne Lidar, and Landsat 5-8 satellite data can be used synergistically to estimate wall-to-wall changes in aboveground carbon density. | Maps of wall-to-
wall changes in
aboveground
carbon density. | Mexican states of
Chihuahua,
Oaxaca,
Campeche,
Yucatan, and
Quintana Roo | 2001-2015 | 30 - 250 m | Annual | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | USAID, Chiapas and Campeche jurisdictional governments | | Walker-W-01 [2014] Direct Measurement of Aboveground Carbon Dynamics in Support of Large-Area CMS Development | - Conduct an independent accuracy assessment of the aboveground carbon density change products
produced as well as of derivative estimates of gross emissions. | Accuracy assessment of the aboveground carbon density change products and derivative estimates of gross emissions. | Mexico | N/A | N/A | N/A | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | USAID, Chiapas and Campeche jurisdictional governments | | Williams-C-01 [2014] Translating Forest Change to Carbon Emissions/Removals Linking Disturbance Products, Biomass Maps, and Carbon Cycle Modeling in a Comprehensive Carbon Monitoring Framework | - Build a new capacity for a more thorough carbon stock and flux monitoring framework to deliver a new tool for REDD+ Tier 3 MRV, decision support, and forecasting, all with process-specificity Provide forest carbon flux estimates Further characterize the attributes of forested pixels beyond the regionally-defined strata Prepare the framework for more complete assessment of the forest sector carbon balance. | Maps of forest carbon fluxes, with pixel-level information on pre-disturbance biomass, disturbance type, and disturbance severity in addition to the incorporation of the fate of harvested wood products. | CONUS | 1990-2011 | 1 km x 1 km | Annually | - MRV, REDD+
- GHG emissions
inventory
- Cap-and-trade
program
- Forest inventory
- Land management | EPA, USFS, forest resource managers and planners for assessing carbon sink and source dynamics. | | Williams-C-01 [2014] Translating Forest Change to Carbon Emissions/Removals Linking Disturbance Products, Biomass Maps, and Carbon Cycle Modeling in a Comprehensive Carbon Monitoring Framework | - Build a new capacity for a more thorough carbon stock and flux monitoring framework to deliver a new tool for REDD+ Tier 3 MRV, decision support, and forecasting, all with process-specificity Provide aboveground biomass estimates. | Maps of forest carbon stocks, with pixel-level information on forest type, site productivity, and age. | CONUS | 1990-2011 | 1 km x 1 km | Annually | - MRV, REDD+ - GHG emissions inventory - Cap-and-trade program - Forest inventory - Land management | EPA, USFS, forest resource managers and planners for assessing carbon sink and source dynamics. | | Website: o | Website: carbon.nasa.gov Email: cms_applications@cce.nasa.gov | | | | Updated: M | ay 14, 2015 | Version 1 | Page 8/27 | |--|--|--|--|---|--------------------|-----------------------|---|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Williams-C-01 [2014] Translating Forest Change to Carbon Emissions/Removals Linking Disturbance Products, Biomass Maps, and Carbon Cycle Modeling in a Comprehensive Carbon Monitoring Framework | - Test carbon implications of likely management and natural disturbance scenarios. | Estimates of forecasted forest carbon stocks and fluxes under likely management and natural disturbance scenarios. | CONUS | 2012-2050 | 0.5 deg x 0.5 deg | Annually | - MRV, REDD+ - GHG emissions inventory - Cap-and-trade program - Forest inventory - Land management | EPA, USFS, forest resource managers and planners for assessing carbon sink and source dynamics. | | Windham-Myers-01 [2014] Linking Satellite and Soil Data to Validate Coastal Wetland 'Blue Carbon' Inventories: Upscaled Support for Developing MRV and REDD+ Protocols | Develop a verifiable IPCC-relevant, temporally-explicit coastal wetland carbon monitoring protocol appropriate for national policy and market interventions. | Accounting methodology for coastal wetland carbon stocks and fluxes. | CONUS | 1992-2011 | 30 m | Once | - MRV, REDD+ - GHG emissions inventory - Watershed protection plans - Land management | EPA *Tom Wirth*, NOAA, USFWS,
Louisiana Coastal Wetlands
Conservation and Restoration Task
Force, USDA, Council for Environmental
Cooperation, voluntary and regulatory
carbon markets | | Windham-Myers-01 [2014] Linking Satellite and Soil Data to Validate Coastal Wetland 'Blue Carbon' Inventories: Upscaled Support for Developing MRV and REDD+ Protocols | - Quantify coastal wetland carbon stocks. | Maps of coastal wetland carbon stocks | 6 sentinel sites along representative coasts of the U.S. (Pudget Sound, San Francisco Bay, Barataria coast of Louisiana, Everglades, Chesapeake Bay, Cape Cod) | 1992-2011 | 30 m | Once | - MRV, REDD+ - GHG emissions inventory - Watershed protection plans - Land management | EPA *Tom Wirth*, NOAA, USFWS,
Louisiana Coastal Wetlands
Conservation and Restoration Task
Force, USDA, Council for Environmental
Cooperation, voluntary and regulatory
carbon markets | | Windham-Myers-01 [2014] Linking Satellite and Soil Data to Validate Coastal Wetland 'Blue Carbon' Inventories: Upscaled Support for Developing MRV and REDD+ Protocols | - Quantify coastal wetland carbon fluxes. | Estimates of coastal wetland carbon fluxes. | 6 sentinel sites along representative coasts of the U.S. (Pudget Sound, San Francisco Bay, Barataria coast of Louisiana, Everglades, Chesapeake Bay, Cape Cod) | 1992-2011 | 30 m | Once | - MRV, REDD+ - GHG emissions inventory - Watershed protection plans - Land management | EPA *Tom Wirth*, NOAA, USFWS,
Louisiana Coastal Wetlands
Conservation and Restoration Task
Force, USDA, Council for Environmental
Cooperation, voluntary and regulatory
carbon markets | | Windham-Myers-01 [2014] Linking Satellite and Soil Data to Validate Coastal Wetland 'Blue Carbon' Inventories: Upscaled Support for Developing MRV and REDD+ Protocols | - Quantify uncertainties Determine price of precision or extent to which finer habitat classifications (hydrology, salinity, sea-level rise) continue to inform carbon accounting with greater accuracy. | MRV error
analyses across a
series of data-
driven scales. | 6 sentinel sites along representative coasts of the U.S. (Pudget Sound, San Francisco Bay, Barataria coast of Louisiana, Everglades, Chesapeake Bay, Cape Cod) | 1992-2011 | 30 m | Once | - MRV, REDD+ - GHG emissions inventory - Watershed protection plans - Land management | EPA *Tom Wirth*, NOAA, USFWS,
Louisiana Coastal Wetlands
Conservation and Restoration Task
Force, USDA, Council for Environmental
Cooperation, voluntary and regulatory
carbon markets | | Asrar-West-04 [2013] Carbon Monitoring of Agricultural Lands: Developing a Globally Consistent Estimate of Carbon Stocks and Fluxes | - Provide global bottom-up, inventory-based estimates of cropland carbon stocks and fluxes. | Cropland NPP;
Soil C stock; soil
C change | Global | 2005-2011
(also 1960-
2011 at the
global
province
scale) | 0.05° | Annually | - GHG emissions
inventory
- Land management | USDA, EPA, FAO, US State Department | | Website: o | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 9/27 | |---|--|--|--|---|--------------------|-----------------------|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Asrar-West-04 [2013] Carbon Monitoring of Agricultural Lands: Developing a Globally Consistent Estimate of Carbon Stocks and Fluxes | - Provide global bottom-up,
inventory-based estimates of
cropland carbon stocks and
fluxes. | Cropland CO2 flux; Soil C stock change; Livestock CO2 and CH4 Flux; Human CO2 (respiration); and Net cropland biogenic carbon flux | Global | 2005-2011
(also 1960-
2011 at the
global
province
scale) | 0.05° | Annually | - GHG emissions
inventory
- Land management | USDA, EPA, FAO, US State Department | | Cochrane-01 [2013] Filling a Critical Gap in Indonesia's National Carbon Monitoring, Reporting, and Verification Capabilities for Supporting REDD+ Activities | - Create an MRV system that quantifies fire emissions on local-scale in tropical peat-swamp forests for inventory and land management purposes.
 Estimates of peat fire-related emissions. | Central
Kalimantan,
Indonesia | 2007-2011
and 2014 | 30 m | Annually | - MRV, REDD+ - Fire management - GHG emissions inventory - Forest inventory - Land management - Air quality protection | Indonesian government's Forestry
Research and Development Agency,
LAPAN, IPCC TFI, Australian Agency for
International Aid, USAID, USFS | | Cochrane-01 [2013] Filling a Critical Gap in Indonesia's National Carbon Monitoring, Reporting, and Verification Capabilities for Supporting REDD+ Activities | - Create an MRV system that
quantifies fire emissions on local-
scale in tropical peat-swamp
forests for inventory and land
management purposes. | Estimates of land cover changes. | Central
Kalimantan,
Indonesia | 1997-2016 | 30 m | Annually | - MRV, REDD+ - Fire management - GHG emissions inventory - Forest inventory - Land management - Air quality protection | Indonesian government's Forestry
Research and Development Agency,
LAPAN, IPCC TFI, Australian Agency for
International Aid, USAID, USFS | | Cochrane-01 [2013] Filling a Critical Gap in Indonesia's National Carbon Monitoring, Reporting, and Verification Capabilities for Supporting REDD+ Activities | - Create an MRV system that
quantifies fire emissions on local-
scale in tropical peat-swamp
forests for inventory and land
management purposes. | Estimates of burned area. | Central
Kalimantan,
Indonesia | 1997-2016 | 30 m | Annually | - MRV, REDD+ - Fire management - GHG emissions inventory - Forest inventory - Land management - Air quality protection | Indonesian government's Forestry
Research and Development Agency,
LAPAN, IPCC TFI, Australian Agency for
International Aid, USAID, USFS | | Cochrane-01 [2013] Filling a Critical Gap in Indonesia's National Carbon Monitoring, Reporting, and Verification Capabilities for Supporting REDD+ Activities | - Create an MRV system that
quantifies fire emissions on local-
scale in tropical peat-swamp
forests for inventory and land
management purposes. | Estimates of timing of fire activity. | Central
Kalimantan,
Indonesia | 2000-2016 | 30 m | Annually | - MRV, REDD+ - Fire management - GHG emissions inventory - Forest inventory - Land management - Air quality protection | Indonesian government's Forestry
Research and Development Agency,
LAPAN, IPCC TFI, Australian Agency for
International Aid, USAID, USFS | | Cohen-02 [2013] An Historically Consistent and Broadly Applicable MRV System Based on Lidar Sampling and Landsat Time-Series | - Create an MRV system that use field plot, airborne Lidar, and satellite data to quantify carbon stocks for inventory and land management purposes Provide historical data. | Maps and estimates of disturbance. | CONUS (Maine,
Pennsylvania,
New Jersey,
South Carolina,
Minnesota,
Colorado, &
Oregon) | 1972-2014 | 30 m | Annually | - MRV - Fire management - Forest inventory - Land management - Invasive species - Air quality protection | IPCC TFI, USFS , EPA, US State
Department, USGS, White House
Council on Environmental Quality
Chris Woodall, SilvaCarbon | | Cohen-02 [2013] An Historically Consistent and Broadly Applicable MRV System Based on Lidar Sampling and Landsat Time-Series | - Create an MRV system that use field plot, airborne Lidar, and satellite data to quantify carbon stocks for inventory and land management purposes Provide historical data. | Maps and estimates of aboveground biomass. | CONUS (Maine,
Pennsylvania,
New Jersey,
South Carolina,
Minnesota,
Colorado, &
Oregon) | 1990-2014 | 30 m | Annually | - MRV - Fire management - Forest inventory - Land management - Invasive species - Air quality protection | IPCC TFI, USFS, EPA, US State
Department, USGS, White House
Council on Environmental Quality
Chris Woodall, SilvaCarbon | | Project ID / | T | cms_applications@ | | Time Period | Updated: M Spatial Resolution | Temporal | Version 1 | Page 10/27 Potential Users | |--|---|---|------------------------------|-------------|-------------------------------|--|--|---| | Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Frequency | Application Areas | rotential Users | | Collatz-02 [2013] Improving and Extending CMS Land Surface Carbon Flux Products Including Estimates of Uncertainties in Fluxes and Biomass | - Provide global terrestrial carbon
fluxes at appropriate spatial and
temporal resolutions in order to
improve the CMS FPP. | Estimates of terrestrial carbon fluxes: Gross Primary Productivity (GAP)/ Net Primary Productivity (NPP), Net Biome Production (NAP), Ecosystem Respiration (RE)/ Heterotrophic Respiration (RH), and fire emissions. | Global | 2003-2014 | 0.5° x 0.5° and 1° x
1.25° | Monthly at 0.5° resolution and 3-hourly at 1° x 1.25° resolution | - Global carbon
budget calculations
- Fire management
- Land management
- Air quality protection | CMS atmospheric modeling groups (i.e. Bowman-01, Pawson-01, Andrews-02, Nehrkorn-01, French-04), other atmospheric scientists (e.g. those involved in the NASA ASCENDS mission) | | Collatz-02 [2013] Improving and Extending CMS Land Surface Carbon Flux Products Including Estimates of Uncertainties in Fluxes and Biomass | - Provide global estimates of
biomass live and detritus in order
to improve the CMS FPP and
biomass estimates. | Maps of above-
and below-ground
biomass live and
above- and below-
ground biomass
detritus. | Global | 2003-2014 | 0.5° x 0.5° | Annually | - Global carbon
budget calculations
- Fire management
- Land management
- Air quality protection | Scientists who are interested in modeled biomass estimates (French-04) | | Collatz-02 [2013] Improving and Extending CMS Land Surface Carbon Flux Products Including Estimates of Uncertainties in Fluxes and Biomass | - Quantify uncertainties of flux and biomass estimates. | Associated uncertainties for both fluxes and biomass. | Global | 2003-2014 | 0.5° x 0.5° and 1° x
1.25° | Monthly and
annually at
0.5° resolution
and 3-hourly at
1° x 1.25°
resolution | - Global carbon
budget calculations
- Fire management
- Land management
- Air quality protection | Pawson-01, Bowman-01 | | Dubayah-04 [2013] Development of a Prototype MRV System to Support Carbon Ecomarket Infrastructure in Sonoma County | - Create an MRV system that quantifies carbon stocks on local-scale at high resolution in order to support a carbon ecomarket infrastructure. | Canopy height, ground digital elevation model (DEM), and forest/non-forest maps and associated point cloud data. | Sonoma County,
California | 2013 | 1m and 30 m | N/A | - MRV
- Land management
- Forest inventory | Habitat preservation groups (i.e. Sonoma County Agriculture & Open Space Preservation District, The Conservation Fund, The Nature Conservancy), nutrient trading & hydrology groups (i.e. city wastewater treatment facilities, California Departmen of Environment), commercial agriculture groups (precision agriculture and yield productivity consultants, fertilizer companies providing variable rate application services), wildfire fuls modeling groups (California Department of Forestry and Fire Protection, U.S. Forest Service in California), forest management companies (Mendocino Redwood company), national and global entities that want to validate top down products. | | Website: | Website: carbon.nasa.gov Email: cms_applications@cce.nasa.gov | | | | | | Version 1 | Page 11/27 | |---|--|--|------------------------------|-------------|--------------------|-----------------------|--
---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Dubayah-04 [2013] Development of a Prototype MRV System to Support Carbon Ecomarket Infrastructure in Sonoma County | - Create an MRV system that quantifies carbon stocks on local-scale at high resolution in order to support a carbon ecomarket infrastructure. | Aboveground biomass and associated uncertainty maps. | Sonoma County,
California | 2013 | 30 m and 1 ha | N/A | - MRV
- Land management
- Forest inventory | Habitat preservation groups (i.e. Sonoma County Agriculture & Open Space Preservation District, The Conservation Fund, The Nature Conservancy), nutrient trading & hydrology groups (i.e. city wastewater treatment facilities, California Department of Environment), commercial agriculture groups (precision agriculture and yield productivity consultants, fertilizer companies providing variable rate application services), wildfire fuels modeling groups (California Department of Forestry and Fire Protection, U.S. Forest Service in California), forest management companies (Mendocino Redwood company), national and global entities that want to validate top down products. | | Dubayah-04 [2013] Development of a Prototype MRV System to Support Carbon Ecomarket Infrastructure in Sonoma County | - Create an MRV system that
quantifies carbon stocks on local-
scale at high resolution in order to
support a carbon ecomarket
infrastructure. | ED based maps of carbon stocks and flux. | Sonoma County,
California | 2013 | 90 m | N/A | - MRV
- Land management
- Forest inventory | Habitat preservation groups (i.e. Sonoma County Agriculture & Open Space Preservation District, The Conservation Fund, The Nature Conservancy), nutrient trading & hydrology groups (i.e. city wastewater treatment facilities, California Department of Environment), commercial agriculture groups (precision agriculture and yield productivity consultants, fertilizer companies providing variable rate application services), wildfire fuels modeling groups (California Department of Forestry and Fire Protection, U.S. Forest Service in California), forest management companies (Mendocino Redwood company), national and global entities that want to validate top down products. | | Dubayah-04 [2013] Development of a Prototype MRV System to Support Carbon Ecomarket Infrastructure in Sonoma County | - Predict carbon sequestration potential under land use and climate change scenarios using ecosystem modeling (ED). | ED based maps of carbon sequestration potential. | Sonoma County,
California | 2013 | 90 m | N/A | - MRV
- Land management
- Forest inventory | Habitat preservation groups (i.e. Sonoma County Agriculture & Open Space Preservation District, The Conservation Fund, The Nature Conservancy), nutrient trading & hydrology groups (i.e. city wastewater treatment facilities, California Department of Environment), commercial agriculture groups (precision agriculture and yield productivity consultants, fertilizer companies providing variable rate application services), wildfire fuels modeling groups (California Department of Forestry and Fire Protection, U.S. Forest Service in California), forest management companies (Mendocino Redwood company), national and global entities that want to validate top down products. | | | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | 1 | Updated: M | ay 14, 2015 | Version 1 | Page 12/27 | |---|--|--|--|--|--------------------|--|---|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Dubey-01
[2013]
Off-the-shelf Commercial
Compact Solar FTS for
CO2 and CH4
Observations for MRV | - Evaluate the precision,
accuracy, and stability of a new
off-the-shelf, compact, affordable,
easy-to-use, and low-resolution
spectrometer in comparison to
those currently used to monitor
CO2 and CH4. | Performance evaluation of a new off-the-shelf, low-resolution MRV technology, which includes measurements of regional total column XCO2 and XCH4 observations. | Global, with focus
on developing
countries in Asia
(China & India),
South America,
and Africa | 2014-2015 | 10 km | Every 5
minutes during
daytime
sampling | - MRV, REDD+ - GHG emissions inventory - Global carbon budget calculations - Land management | DOE, EPA, certain CMS projects, Total
Carbon Column Observing Network
(TCCON), Orbiting Carbon Observatory-
2 (OCO-2) science team, U.S. Global
Change Research Program | | Duren-01
[2013]
Understanding User
Needs for Carbon
Monitoring Information | - Engage the user community and identify needs for policy-relevant carbon monitoring information | Policy briefs
summarizing user
needs for carbon
data. | Local to Global | 2010-2100 | various | various | Policy formulation;
inventory diagnosis;
project/facility level
MRV; state/national
level MRV; technical
capacity building;
direct mitigation
support; monitoring
capability
assessments;
projections | CMS science team and NASA program management; other carbon research agencies (NOAA, USDA, DOE, etc) | | Duren-01
[2013]
Understanding User
Needs for Carbon
Monitoring Information | - Evaluate current and planned
NASA CMS data products with
regard to their value for decision
making | White papers reporting results of data product evaluations. | Local to global | 2010-2100 | various | various | Policy formulation;
inventory diagnosis;
project/facility level
MRV; state/national
level MRV; technical
capacity building;
direct mitigation
support; monitoring
capability
assessments;
projections | CMS science team and NASA program management; other carbon research agencies (NOAA, USDA, DOE, etc) | | Duren-01
[2013]
Understanding User
Needs for Carbon
Monitoring Information | - Explore alternative methods for visualizing and communicating carbon monitoring information and associated uncertainties to decision makers and other stakeholders. | Carbon Calculator/ Data Portal that integrates multiple CMS products to support evaluation and decision support. | Currently CONUS
(ultimately Global) | 2002-2012
(coverage
varies by
data layer) | 0.1 to 50 km | monthly | Policy formulation;
inventory diagnosis;
project/facility level
MRV; state/national
level MRV; technical
capacity building;
direct mitigation
support; monitoring
capability
assessments;
projections | U.S. State Department, US EPA, White
House Council on Environmental Quality,
US Forest Service, California Air
Resources Board, etc | | Escobar-01
[2013]
Applications of the NASA
Carbon Monitoring
System: Engagement,
Use, and Evaluation | - Broaden and strengthen the knowledge of CMS data products by engaging the research and applications communities that will benefit from the CMS initiative - Explore ways to evaluate the impact of CMS data products on decision making, economic benefits, and improved understanding of carbon cycle science | Evaluation of
stakeholders' end
uses of CMS
products | Local (County
and state scale) | 2013 - 2016 | N/A | N/A | - MRV - GHG emissions inventory - Land management - Forest inventory - Fire management - Invasive species - Watershed protection plans - Ocean acidification mitigation - Fisheries regulations - Coastal land management - Air quality protection - Cap-and-trade program - Urbanization policies - Global carbon budget calculations - Impervious surface | Any stakeholder who is
interested in transitioning carbon science derived products to decision-making frameworks. (i.e. NASA, CCIWG, DOE, EPA, USDA, USFS, NOAA, USAID, State Department, California Air Resources Board, Sonoma County Agricultural Preservation and Open Space District, Conservation International, Ocean Conservancy, Maryland DNR, Delaware DNR, Pennsylvania DNR) | | | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | 1 | Updated: M | ay 14, 2015 | Version 1 | Page 13/27 | |---|---|---|----------------|-------------|--------------------|-----------------------|---|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Escobar-01
[2013]
Applications of the NASA
Carbon Monitoring
System: Engagement,
Use, and Evaluation | - Broaden and strengthen the knowledge of CMS data products by engaging the research and applications communities that will benefit from the CMS initiative - Inform the CMS product developers of the information scale and decision domain of stakeholders, policy makers, and end-users. | Applications
workshops and
reports | Variable | 2013 - 2016 | N/A | N/A | - MRV - GHG emissions inventory - Land management - Forest inventory - Fire management - Invasive species - Watershed protection plans - Ocean acidification mitigation - Fisheries regulations - Coastal land management - Air quality protection - Cap-and-trade program - Urbanization policies - Global carbon budget calculations - Impervious surface | Any stakeholder who is interested in transitioning carbon science products to decision-making frameworks. (i.e. NASA, CCIWG, DOE, EPA, USDA, USFS, NOAA, USAID, State Department, California Air Resources Board, Sonoma County Agricultural Preservation and Open Space District, Conservation International, Ocean Conservancy, Maryland DNR, Delaware DNR, Pennsylvania DNR) | | Escobar-01
[2013]
Applications of the NASA
Carbon Monitoring
System: Engagement,
Use, and Evaluation | - Provide tools and activities that translate the CMS science in a way that will allow stakeholders and decision makers understand the capabilities of the CMS science products | CMS Products Fact Sheet and Application Readiness Level (ARL) figures for all 2012, 2013, and 2014 projects | N/A | 2012 - 2016 | N/A | N/A | - MRV - GHG emissions inventory - Land management - Forest inventory - Fire management - Invasive species - Watershed protection plans - Ocean acidification mitigation - Fisheries regulations - Coastal land management - Air quality protection - Cap-and-trade program - Urbanization policies - Global carbon budget calculations | In addition to CMS science team, any stakeholder who is interested in transitioning carbon science products to decision-making frameworks. (i.e. NASA, CCIWG, DOE, EPA, USDA, USFS, NOAA, USGS, USAID, State Department, California Air Resources Board, Sonoma County Agricultural Preservation and Open Space District, Conservation International, Ocean Conservancy, Maryland DNR, Delaware DNR, Pennsylvania DNR) | | Escobar-01
[2013]
Applications of the NASA
Carbon Monitoring
System: Engagement,
Use, and Evaluation | - Inform the CMS product
developers of the information
scale and decision domain of
stakeholders, policy makers, and
end-users | CMS Applications
Policy Speaker
Series | N/A | 2014 - 2016 | N/A | N/A | - MRV - GHG emissions inventory - Land management - Forest inventory - Fire management - Invasive species - Watershed protection plans - Ocean acidification mitigation - Fisheries regulations - Coastal land management - Air quality protection - Cap-and-trade program - Urbanization policies - Global carbon budget calculations | Any carbon scientist or stakeholder who is interested in transitioning carbon science products to decision-making frameworks. | | | Website: carbon.nasa.gov Email: cms_applications@cce.nasa.gov Updated: May 14, 2015 | | | | | | | Page 14/27 | |--|---|--|--|--|--|--|--|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Escobar-01 [2013] Applications of the NASA Carbon Monitoring System: Engagement, Use, and Evaluation | - Provide tools and activities that translate the CMS science in a way that will allow stakeholders and decision makers understand the capabilities of the CMS science products | Translation of science language for the CMS website | N/A | 2014 - 2016 | N/A | N/A | - MRV - GHG emissions inventory - Land management - Forest inventory - Fire management - Invasive species - Watershed protection plans - Ocean acidification mitigation - Fisheries regulations - Coastal land management - Air quality protection - Cap-and-trade program - Urbanization policies - Global carbon budget calculations | Any carbon scientist or stakeholder who is interested in transitioning carbon science products to decision-making frameworks. | | Escobar-01
[2013]
Applications of the NASA
Carbon Monitoring
System: Engagement,
Use, and Evaluation | - Explore ways to evaluate the impact of CMS data products on decision making, economic benefits, and improved understanding of carbon cycle science | Economic (cost-
benefit) analysis
of LiDAR data use
in the Maryland
forestry program | Maryland | 2013 - 2015 | N/A | N/A | - Forest inventory
- Land management
- Invasive species
- Watershed
protection plans | Maryland Department of Natural
Resources, Baltimore Washington
Partners for Forest Stewardship, USFS | | Graven-01 [2013] Quantifying Fossil and Biospheric CO2 Fluxes in California Using Ground- Based and Satellite Observations | - Observe spatial patterns of fossil fuel-derived and biospheric CO2 in California by field sampling and measurement of radiocarbon in CO2 from a network of tower sites, use radiocarbon observations with in situ and satellite CO2 measurements in regional CO2 inversion, quantify uncertainties, and compare with bottom-up inventories. | Fossil fuel emissions estimates. | California | May 2014,
Oct-Nov
2014, Jan-
Feb 2015 | Statewide, sub-
state regions of
greater than 100
km2 | Several one-
month periods
in 2014-15 | - MRV - GHG emissions inventory - Cap-and-trade program - Land management | California Air Resources Board,
California Resources Agency, California
Energy Commission | | Graven-01
[2013]
Quantifying Fossil and
Biospheric CO2 Fluxes in
California Using Ground-
Based and Satellite
Observations | - Observe spatial patterns of fossil fuel-derived and biospheric CO2 in California by field sampling and measurement of radiocarbon in CO2 from a network of tower sites, use radiocarbon observations with in situ and satellite CO2 measurements in regional CO2 inversion, quantify uncertainties, and compare with bottom-up inventories. | Biospheric CO2 flux estimates. | California | May 2014,
Oct-Nov
2014, Jan-
Feb 2015 | Statewide, sub-
state regions of
greater than 100
km2 | Several one-
month periods
in 2014-16 | - MRV - GHG emissions inventory - Cap-and-trade program - Land management | California Air Resources Board,
California Resources Agency, California
Energy Commission | |
Hagen-01
[2013]
Operational Multi-Sensor
Design for National Scale
Forest Carbon Monitoring
to Support REDD+ MRV
Systems | - Produce improved wall-to-wall
forest carbon stock maps using
Lidar, radar, and optical data in
support of developing a National
Forest Monitoring System in
Kalimantan, Indonesia. | Map of forest carbon stocks. | 5 provinces of
Kalimantan,
Indonesia | 2010 | 100 m | Only one
sampling
snapshot for
2010 | - MRV, REDD+
- Forest inventory
- Land management | Indonesian Ministry of Forestry *Dirk
Hoekman*, Indonesia REDD+ Office of
President *Heru Prasetyo*, Indonesian
government's Forestry Research and
Development Agency, LAPAN, IPCC
TFI, US State Department, USFS,
USAID | | Hagen-01
[2013]
Operational Multi-Sensor
Design for National Scale
Forest Carbon Monitoring
to Support REDD+ MRV
Systems | - Map carbon emissions associated with forest degradation using Lidar and radar in support of developing a National Forest Monitoring System in Kalimantan, Indonesia. | Maps of forest carbon fluxes. | 5 provinces of
Kalimantan,
Indonesia | 2010-2015 | 100 m | Annually | - MRV, REDD+
- Forest inventory
- Land management | Indonesian Ministry of Forestry *Dirk
Hoekman*, Indonesia REDD+ Office of
President *Heru Prasetyo*, Indonesian
government's Forestry Research and
Development Agency, LAPAN, IPCC
TFI, US State Department, USFS,
USAID | | | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 15/27 | |---|--|---|--|-------------------------------|--------------------|---|--|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Hagen-01 [2013] Operational Multi-Sensor Design for National Scale Forest Carbon Monitoring to Support REDD+ MRV Systems | - Develop an uncertainty tracking system for carbon monitoring. | An uncertainty tracking system. | 5 provinces of
Kalimantan,
Indonesia | NA | 100 m | Annually | - MRV, REDD+
- Forest inventory
- Land management | Indonesian Ministry of Forestry *Dirk
Hoekman*, Indonesia REDD+ Office of
President *Heru Prasetyo*, Indonesian
government's Forestry Research and
Development Agency, LAPAN, IPCC
TFI, US State Department, USFS,
USAID | | Keller-01 [2013] A Data Assimilation Approach to Quantify Uncertainty for Estimates of Biomass Stocks and Changes in Amazon Forests | - Quantify spatially explicit
aboveground carbon stocks,
changes in carbon stocks, and
uncertainties. | Maps of aboveground carbon stocks. | Paragominas,
Brazil | 2012-2015 | 100 m | 2 sampling
snapshots, one
in 2012 and
another in
2014 | - MRV, REDD+
- Forest inventory
- Land management | Municipality of Paragominas, State of
Para, Brazilian Ministry of the
Environment, Brazilian Space Agency,
Instituto Floresta Tropical, Imazon | | Keller-01 [2013] A Data Assimilation Approach to Quantify Uncertainty for Estimates of Biomass Stocks and Changes in Amazon Forests | - Quantify spatially explicit
aboveground carbon stocks,
changes in carbon stocks, and
uncertainties. | Maps of changes in carbon stocks. | Paragominas,
Brazil | 2012-2015 | 100 m | 2 sampling
snapshots, one
in 2012 and
another in
2014 | - MRV, REDD+
- Forest inventory
- Land management | Municipality of Paragominas, State of
Para, Brazilian Ministry of the
Environment, Brazilian Space Agency,
Instituto Floresta Tropical, Imazon | | Keller-01 [2013] A Data Assimilation Approach to Quantify Uncertainty for Estimates of Biomass Stocks and Changes in Amazon Forests | - Quantify spatially explicit
aboveground carbon stocks,
changes in carbon stocks, and
uncertainties. | Maps of spatially explicit associated uncertainties in biomass. | Paragominas,
Brazil | 2012-2015 | 100 m | 2 sampling
snapshots, one
in 2012 and
another in
2014 | - MRV, REDD+
- Forest inventory
- Land management | Municipality of Paragominas, State of
Para, Brazilian Ministry of the
Environment, Brazilian Space Agency,
Instituto Floresta Tropical, Imazon | | Keller-01 [2013] A Data Assimilation Approach to Quantify Uncertainty for Estimates of Biomass Stocks and Changes in Amazon Forests | - Quantify spatially explicit
aboveground carbon stocks,
changes in carbon stocks, and
uncertainties. | Maps of spatially explicit associated uncertainties in stock change. | Paragominas,
Brazil | 2012-2015 | 100 m | 2 sampling
snapshots, one
in 2012 and
another in
2014 | - MRV, REDD+
- Forest inventory
- Land management | Municipality of Paragominas, State of
Para, Brazilian Ministry of the
Environment, Brazilian Space Agency,
Instituto Floresta Tropical, Imazon | | Kellndorfer-03 [2013] Time Series Fusion of Optical and Radar Imagery for Improved Monitoring of Activity Data, and Uncertainty Analysis of Emission Factors for Estimation of Forest Carbon Flux | - Quantify forest carbon fluxes
and uncertainties in support of
developing national MRV systems
for REDD+. | Estimates of carbon flux from deforestation, forest degradation, and forest regrowth. | Peru, Colombia,
and Mexico | 1996-2014 | 1 ha | Annually | - MRV, REDD+
- Forest inventory
- GHG emissions
inventory
- Land management | Peruvian Ministry of Environment;
Colombian Ministry of Environment;
Colombian Institute of Hydrology,
Meteorology, and Environmental
Studies; Mexican National
Commission for Knowledge and Use
of Biodiversity; Mexican National
Forestry Commission; USAID | | Lauvaux-01 [2013] Quantification of the Sensitivity of NASA CMS Flux Inversions to Uncertainty in Atmospheric Transport | - Improve the CMS FPP by investigating the role of atmospheric transport. | Estimates of the sensitivity of NASA CMS Flux inversions to uncertainty in atmospheric transport. | North America | 2010 | 4° x 5° | Monthly | - Global carbon
budget calculations
- Global carbon flux,
atmospheric
validation, monitoring
systems for carbon
fluxes | Certain CMS projects, EPA, NOAA
Carbon Tracking group | | Morton-02 [2013] A Joint USFS-NASA Pilot Project to Estimate Forest Carbon Stocks in Interior Alaska by Integrating Field, Airborne and Satellite Data | - Quantify forest carbon stocks
and uncertainties in a region with
sparse ground-based data for
inventory and management
purposes. | Maps of carbon stocks with pixel-level carbon estimates and pixel-level uncertainties. | Tanana Forest Management District of Interior Alaska (Tetlin Widdlife Refuge, Bonanzo Creek Experimental Forest, Caribou Poker Creeks Experimental Watersheds, | July and
August of
2014 | 30 m | 1 sampling
snapshot | - MRV
- Forest inventory
- Land management | USFS in Alaska, NASA CMS and ABoVE science teams | | Website: o | | Updated: M | ay 14, 2015 | Version 1 | Page 16/27 | | | | |---|--|--|---|---------------------------------|---|---|---|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Morton-02 | | | Tanana Valley State Forest, and USFS Tanana Inventory Unit) Tanana Forest Management District of Interior Alaska (Tetlin | | | | | | | [2013] A Joint USFS-NASA Pilot Project to Estimate Forest Carbon Stocks in Interior Alaska by Integrating Field, Airborne and Satellite Data | - Provide statistical estimates of forest carbon stocks with uncertainties for comparison purposes. | Statistical estimates of carbon stocks at stratum level. | Wildlife Refuge,
Bonanzo
Creek
Experimental
Forest, Caribou
Poker Creeks
Experimental
Watersheds,
Tanana Valley
State Forest, and
USFS Tanana
Inventory Unit) | July and
August of
2014 | stratum-level | 1 sampling
snapshot | - MRV
- Forest inventory
- Land management | USFS in Alaska, NASA CMS and ABoVE science teams | | Nehrkorn-01 [2013] Prototype Monitoring, Reporting and Verification System for the Regional Scale: The Boston-DC Corridor | - Develop a measurement
network and an atmospheric
modeling framework for
downscaling the current CMS flux
products to regional and local
scales pertinent to MRV. | Measurements of CO2 concentrations. | Boston-DC urban corridor | mid-2013 to
present | N/A (point measurements) | Hourly | - MRV - Urbanization policies - Cap-and-trade program - GHG emissions inventory - Land management | USFS, Baltimore Washington Forest
Stewardship Partnership, Maryland
Department of Natural Resources, EPA
(Regions 1, 2, & 3) | | Nehrkorn-01 [2013] Prototype Monitoring, Reporting and Verification System for the Regional Scale: The Boston-DC Corridor | - Develop a measurement
network and an atmospheric
modeling framework for
downscaling the current CMS flux
products to regional and local
scales pertinent to MRV. | CO2 flux estimates. | Boston-DC urban corridor | mid-2013 to
present | 1 km | hourly | - MRV - Urbanization policies - Cap-and-trade program - GHG emissions inventory - Land management | USFS, Baltimore Washington Forest
Stewardship Partnership, Maryland
Department of Natural Resources, EPA
(Regions 1, 2, & 3) | | Nehrkorn-01 [2013] Prototype Monitoring, Reporting and Verification System for the Regional Scale: The Boston-DC Corridor | - Develop a measurement
network and an atmospheric
modeling framework for
downscaling the current CMS flux
products to regional and local
scales pertinent to MRV. | Meteorological
(atmospheric
transport)
modeling outputs. | Boston-DC urban corridor | mid-2013 to
present | Nested grids with
grid spacing
between 1-30 km,
finer than 10 km
over area of
interest | Every 10
minutes to
hourly,
depending on
horizontal
resolution of
the nested
grids | - MRV - Urbanization policies - Cap-and-trade program - GHG emissions inventory - Land management | USFS, Baltimore Washington Forest
Stewardship Partnership, Maryland
Department of Natural Resources, EPA
(Regions 1, 2, & 3) | | Stehman-01 [2013] Developing Statistically Rigorous Sampling Design and Analysis Methods to Reduce and Quantify Uncertainties Associated with Carbon Monitoring Systems | - Develop sampling methodology of key parameters of a carbon monitoring system that minimizes uncertainty and financial costs using field plot, airborne, and satellite data. | Sampling design and analysis methods to quantify and reduce uncertainties associated with carbon monitoring systems. | Global | N/A | N/A | N/A | - MRV, REDD+ | Certain CMS projects and any REDD+
project that seeks to use remote sensing
data to quantify impacts from land cover
changes. | | Vargas-01 [2013] A Framework for Carbon Monitoring and Upscaling in Forests across Mexico to Support Implementation of REDD+ | - Create an MRV system that quantifies forest carbon stocks, dynamics, and uncertainties from ecosystem- to regional-scales for inventory and land management purposes. | Methodologies for upscaling carbon stocks and dynamics from forest inventories to regional scale. | Mexico | 2000-2015 | 5 km | Monthly | - MRV, REDD+
- Forest inventory
- Land management | USFS, Mexican National Forestry
Commission, Canadian Forest Service | | Andrews-02 [2012] North American Regional- Scale Flux Estimation and Observing System Design for the NASA Carbon Monitoring System | - Use in situ observations and remote sensing data (ACOS GOSAT + TCCON) together in a regional inverse modeling framework for North America Compare with CMS Flux Pilot Project (FPP) results. | CO2 flux estimates. | North America | July 2009 –
December
2010 | 1° x 1° | 3-hourly | - GHG emissions
inventory
- Cap-and-trade
program
- Land management | EPA, USDA, NASA (GOSAT, ACOS, & OCO-2 *Chris O'Dell* science teams), and stakeholders of any emissions verification project | | Website: o | arbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 17/27 | |---|--|--|--|--|---|-------------------------------------|---|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Andrews-02 [2012] North American Regional- Scale Flux Estimation and Observing System Design for the NASA Carbon Monitoring System | - Use in situ observations and remote sensing data (ACOS GOSAT + TCCON) together in a regional inverse modeling framework for North America Compare with CMS Flux Pilot Project (FPP) results. | Estimated CO2 profiles corresponding to GOSAT XCO2 observations. | North America | July 2009 –
December
2010 | N/A | N/A | - GHG emissions
inventory
- Cap-and-trade
program
- Land management | EPA, USDA, NASA (GOSAT, ACOS, & OCO-2 *Chris O'Dell* science teams), and stakeholders of any emissions verification project | | Andrews-02 [2012] North American Regional-Scale Flux Estimation and Observing System Design for the NASA Carbon Monitoring System | - Quantify fluxes at scales relevant for MRV using strategies that incorporate diverse carbon dioxide observations. | Measurement sampling footprints | North America | 2007-2010; 1
July - 20
August 2012 | 1° latitude x 1° longitude; 0.1° latitude x 0.1° longitude for subdomain centered on measurement location | Hourly | - MRV, REDD+ - GHG emissions inventory - Cap-and-trade program - Land management | EPA, USDA, NASA (GOSAT, ACOS, & OCO-2 *Chris O'Dell* science teams), and stakeholders of any emissions verification project, other atmospheric transport modelers and inverse modelers | | Balch-03 [2010, continued beyond 2012] Coccolithophores of the Beaufort and Chukchi Seas: Harbingers of a Polar Biogeochemical Province in Transition | - Collect various biological and
bio-optical observations to
address the role of calcifiers in
the Arctic Ocean. | Measurements of calcification rate (including total primary productivity). | Western Arctic
Ocean | June and July
of 2011 | Not Applicable,
involves direct
biological
samplings along
km-scale transects | Daily | - Fisheries regulations - Ocean acidification mitigation - Global carbon budget calculations - Coastal land management | NOAA, EPA, Global Carbon Project
(GCP), NASA | | Balch-03 [2010, continued beyond 2012] Coccolithophores of the Beaufort and Chukchi Seas: Harbingers of a Polar Biogeochemical Province in Transition | - Collect various biological and
bio-optical observations to
address the role of calcifiers in
the Arctic Ocean. | Measurements of particulate inorganic carbon and biogenic silica concentrations. | Western Arctic
Ocean | June and July
of 2011 | Not Applicable,
involves direct
biological
samplings along
km-scale transects | Daily | - Fisheries regulations - Ocean acidification mitigation - Global carbon budget calculations - Coastal land management | NOAA, EPA, Global Carbon Project
(GCP), NASA | | Balch-03 [2010, continued beyond 2012] Coccolithophores of the Beaufort and Chukchi Seas: Harbingers of a Polar Biogeochemical Province in Transition | - Collect various biological and
bio-optical observations to
address the role of calcifiers in
the Arctic Ocean. | Measurements of coccolithophore/ phytoplankton abundance. | Western Arctic
Ocean | June and July
of 2011 | Not Applicable,
involves direct
biological
samplings along
km-scale transects | Daily | - Fisheries regulations - Ocean acidification mitigation - Global carbon budget calculations - Coastal land management | NOAA, EPA, Global Carbon Project
(GCP), NASA | | Behrenfeld-01 [2010, continued beyond 2012] Characterizing the Phytoplankton Component of Oceanic Particle Assemblages | - Develop methodology using both ground-based and remote sensing data for measuring phytoplankton carbon biomass in the open ocean on a routine basis. | Measurements of phytoplankton carbon. | Tropical Pacific
and Atlantic
Oceans | 2012 | Not Applicable,
involves direct
biological
samplings along
km-scale transects | 3-4 times a
day when
sampling | Fisheries regulations Ocean acidification mitigation Global carbon budget calculations Coastal land management | Any researcher who develops algorithms that relate optical properties to field data of ocean carbon stocks | | Bowman-01
[2012]
Continuation of the Carbon
Monitoring System Flux
Pilot Project | - Provide estimates of terrestrial biospheric carbon dioxide fluxes. | Spatially gridded,
temporally resolved estimates of terrestrial biospheric CO2 fluxes. | Global | 2010-2015 | 0.5° | Monthly | - Forest inventory
- Land management | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-01
[2012]
Continuation of the Carbon
Monitoring System Flux
Pilot Project | - Provide estimates of ocean surface carbon dioxide fluxes. | Spatially gridded, temporally resolved estimates of oceanic CO2 fluxes. | Global | 2010-2015 | 18 km | Monthly and 3-
hourly | - GHG emissions inventory - Watershed protection plans - Global carbon budget calculations - Ocean acidification mitigation | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-01
[2012]
Continuation of the Carbon
Monitoring System Flux
Pilot Project | - Provide estimates of anthropogenic emissions from fossil fuel. | Spatially gridded,
temporally
resolved
estimates of fossil
fuel emissions. | Global | 2010-2015 | 0.1° | Monthly and 3-
hourly | - GHG emissions
inventory
- Global carbon
budget calculations | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Website: o | | | | | | ay 14, 2015 | Version 1 | Page 18/27 | |---|--|---|--|---|---|--|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Bowman-01
[2012]
Continuation of the Carbon
Monitoring System Flux
Pilot Project | - Provide "top-down" estimates of carbon emissions due to biomass burning. | Spatially gridded,
temporally
resolved
estimates of
biomass burning. | Global | 2010-2015 | 4° x 5° | Monthly | - Forest inventory - Land management - Global carbon budget calculations | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-01
[2012]
Continuation of the Carbon
Monitoring System Flux
Pilot Project | Integrate observations across carbon cycle to attribute atmospheric CO2 distributions and trends to surface fluxes using an atmospheric top-down flux inversion. | Spatially gridded,
temporally
resolved
estimates of
atmospherically
constrained total
CO2 fluxes and
uncertainties | Global | 2010-2015 | 4° x 5° | Monthly | - GHG emissions inventory - Forest inventory - Land management - Watershed protection plans - Global carbon budget calculations - Ocean acidification mitigation | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Bowman-01
[2012]
Continuation of the Carbon
Monitoring System Flux
Pilot Project | Provide posterior CO2
concentration data for evaluation
and boundary condition to
regional models | Spatially gridded, temporally resolved estimates of vertically resolved CO2 concentrations. | Global | 2010-2015 | 4° x 5° | 3-hourly | - GHG emissions inventory - Forest inventory - Land management - Watershed protection plans - Global carbon budget calculations - Ocean acidification mitigation | Group on Earth Observations (GEO),
Regional Greenhouse Gas Initiative
(RGGI), CMS flux teams, EPA, NOAA
John Miller, DOE Integrated
Assessment (IA) and Climate and Earth
System Modeling groups | | Cook-B-01 [2012] Improving Forest Biomass Mapping Accuracy with Optical-LiDAR Data and Hierarchical Bayesian Spatial Models | - Quantify carbon stocks on local-
scale at high spatial resolution for
inventory and land management
purposes. | Forest biomass maps and associated uncertainties generated with hierarchical Bayesian spatial models. | Penobscot
Experimental
Forest of Maine | 2009-2012 | 10 – 20 m (plot-
scale) | Every 5 years
for Maine and
sampling
snapshots for
other sites | - Forest inventory
- Land management | USFS, private timber firms that are interested in productivity and biomass estimates, forest ecologists, and carbon cycle scientists who are interested in using Lidar to quantify biomass and structure. | | Cook-B-01 [2012] Improving Forest Biomass Mapping Accuracy with Optical-LiDAR Data and Hierarchical Bayesian Spatial Models | - Quantify carbon stocks on local-
scale at high spatial resolution for
inventory and land management
purposes. | Forest biomass estimation using individual tree crown information | Smithsonian
Environmental
Research Center
of Maryland and
Sierra Nevada
Mountains
(Teakettle) of
California | 2008-2012 | Greater than or equal to 1 m (tree-scale) | Single point time observation | - Forest inventory
- Land management | USFS, private timber firms that are interested in productivity and biomass estimates, forest ecologists, and carbon cycle scientists who are interested in using Lidar to quantify biomass and structure. | | Dubayah-03
[2012]
High Resolution Carbon
Monitoring and Modeling:
A CMS Phase 2 Study | Develop a framework for
estimating local-scale, high-
resolution carbon stocks and
future carbon sequestration
potential using remote sensing
and ecosystem modeling. | Canopy height and forest/non-forest maps. | Maryland (all 24 counties) | Variable
based on
Lidar
acquisition
dates (2004-
2012) | 1 m and 30 m | N/A | - Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
DOE, EPA, private landowners, county
GIS departments, national and global
entities that want to validate top down
products | | Dubayah-03
[2012]
High Resolution Carbon
Monitoring and Modeling:
A CMS Phase 2 Study | Develop a framework for
estimating local-scale, high-
resolution carbon stocks and
future carbon sequestration
potential using remote sensing
and ecosystem modeling. | Aboveground biomass with associated uncertainty maps. | Maryland (all 24
counties) and
Addison County
of Vermont | Variable
based on
Lidar
acquisition
dates (2004-
2012) | 30 m | N/A | - Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
DOE, EPA, private landowners, county
GIS departments, national and global
entities that want to validate top down
products | | Dubayah-03
[2012]
High Resolution Carbon
Monitoring and Modeling:
A CMS Phase 2 Study | Develop a framework for
estimating local-scale, high-
resolution carbon stocks and
future carbon sequestration
potential using remote sensing
and ecosystem modeling. | Prognostic
ecosystem model
(ED) based maps
of carbon stocks
and flux. | Maryland (all 24 counties) | Updates
forthcoming | 90 m | N/A | - Land management
- Forest inventory | Maryland Department of Natural Resources (DNR) Forest Service, DOE, EPA, private landowners, county GIS departments, national and global entities that want to validate top down products | | Dubayah-03
[2012]
High Resolution Carbon
Monitoring and Modeling:
A CMS Phase 2 Study | Develop a framework for
estimating local-scale, high-
resolution carbon stocks and
future carbon sequestration
potential using remote sensing
and ecosystem modeling. | ED based maps of carbon sequestration potential. | Maryland (all 24 counties) | Variable
based on
Lidar
acquisition
dates (2004-
2012) | 90 m | N/A | - Land management
- Forest inventory | Maryland Department of Natural Resources (DNR) Forest Service, DOE, EPA, private landowners, county GIS departments, national and global entities that want to validate top down products | | Website: o | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 19/27 | | | |--|--
---|---------------------------------------|------------------------|---|-----------------------|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Dubayah-03
[2012]
High Resolution Carbon
Monitoring and Modeling:
A CMS Phase 2 Study | - Develop a framework for
estimating local-scale, high-
resolution carbon stocks and
future carbon sequestration
potential using remote sensing
and ecosystem modeling. | Single photon
Lidar canopy
height and
derived biomass
maps. | Only Garrett
County of
Maryland | Updates
forthcoming | Canopy height at
1m and biomass at
30 m | N/A | - Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
DOE, EPA, private landowners, county
GIS departments, national and global
entities that want to validate top down
products | | Dubayah-03
[2012]
High Resolution Carbon
Monitoring and Modeling:
A CMS Phase 2 Study | - Provide an easy-to-access platform for obtaining data products. | Web-based data visualization and query system. | N/A | N/A | N/A | N/A | - Land management
- Forest inventory | Maryland Department of Natural
Resources (DNR) Forest Service,
DOE, EPA, private landowners, county
GIS departments, national and global
entities that want to validate top down
products | | French-04 [2012] Development of Regional Fire Emissions Products for NASA's Carbon Monitoring System using the Wildland Fire Emissions Information System | - Provide estimates of wildland fire emissions with assessment of uncertainty. Documentation of the model and some improvements to include more dynamic input data. | Maps of emissions from wildland fires. Emissions include CO2, CO, CH4, NMHC, PM2.5, PM10, and total carbon. | CONUS and
Alaska | 2001-2013 | 1 km | Monthly | - Fire management
- Forest inventory
- Land management
- Air quality protection | EPA, USFS, BLM, carbon accounting researchers, state agencies that prescribe burning and/or monitor air quality | | Healey-01
[2012]
A Global Forest Biomass
Inventory Based upon
GLAS Lidar Data | - Provide global country-level
estimates of mean aboveground
forest biomass per hectare in
support of the 2015 UN Food and
Agriculture Association Forest
Resources Assessment. | Statistical estimates derived consistently across countries and with well- defined confidence intervals of country-level mean forest biomass values and mean canopy height. | Global | 2005 | N/A | N/A | - MRV, REDD+
- Forest inventory
- Land management | UN Food and Agriculture Organization (FAO), USFS, SilvaCarbon, and any country that needs the baseline data in order to improve its forest inventory system | | Healey-01
[2012]
A Global Forest Biomass
Inventory Based upon
GLAS Lidar Data | - Quantify uncertainties. | Associated standard errors. | Global | 2005 | N/A | N/A | - MRV, REDD+
- Forest inventory
- Land management | UN Food and Agriculture Organization (FAO), USFS, SilvaCarbon, and any country that needs the baseline data in order to improve its forest inventory system | | Houghton-02 [2012] Spatially Explicit Sources and Sinks of Carbon from Deforestation, Reforestation, Growth and Degradation in the Tropics: Development of a Method and a 10 Year Data Set 2000-2010 | - Develop methodology using satellite data for estimating gross and net carbon fluxes from deforestation, reforestation, growth, and degradation of tropical forests. | TBD. Maps of gross and net carbon fluxes in the tropical forests due to deforestation, reforestation, growth, and degradation. | Global Tropics | 2000-2012 | 500 m | Annually | - MRV, REDD+ - Forest inventory - Land management - Forest inventory - Global carbon budget calculations | Developing countries who are seeking to reduce emissions in the tropics (Brazil, Indonesia), Brazilian National Institute for Space Research (INPE), Indonesia National Aerospace Institute (LAPAN), FAO, USAID, GCP | | Huntzinger-01 [2012] Reduction in Bottom-Up Land Surface CO2 Flux Uncertainty in NASA's Carbon Monitoring System Flux Project through Systematic Multi-Model Evaluation and Infrastructure Development | - Provide improved land-
atmosphere input products to the
CMS FPP using the multi-model
ensemble from MsTMIP. | New prior land
flux estimates,
and their
associated
uncertainty, for
CMS and other
atmospheric CO2
inversions. | Global | 2009-2010 | 2° x 2.5° | Sub-daily | - GHG emissions inventory - Global carbon budget calculations - Land management | Process-based and inversion modeling communities participating in MsTMIP , NASA CMS , and elsewhere, IPCC Task Force on National Greenhouse Gas Inventories (IPCC TFI), GEO, USFS | | Website: 0 | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 20/27 | |--|--|---|--|-------------------|-------------------------------|-----------------------|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Huntzinger-01 [2012] Reduction in Bottom-Up Land Surface CO2 Flux Uncertainty in NASA's Carbon Monitoring System Flux Project through Systematic Multi-Model Evaluation and Infrastructure Development | - Develop the technical infrastructure of a carbon monitoring system to handle an integrated multiple land surface models system for operational use. | Updated estimates of terrestrial net CO2 fluxes inferred from the CMS inversion and informed by these new land flux priors. | Global | 2009-2010 | 2° x 2.5° | Sub-daily | - GHG emissions inventory - Global carbon budget calculations - Land management | Process-based and inversion modeling communities participating in MsTMIP, NASA CMS, and elsewhere, IPCC Task Force on National Greenhouse Gas Inventories (IPCC TFI), GEO, USFS | | Huntzinger-01 [2012] Reduction in Bottom-Up Land Surface CO2 Flux Uncertainty in NASA's Carbon Monitoring System Flux Project through Systematic Multi-Model Evaluation and Infrastructure Development | - Evaluate the consistency of MsTMIP model estimates with atmospheric CO2 observations, providing an additional benchmark of land-atmosphere model performance. | Atmospheric CO2
signals generated
from 15 terrestrial
biospheric
models. | Global | 2009-2010 | 2° x 2.5° | Sub-daily | - GHG emissions inventory - Global carbon budget calculations - Land management | Process-based and inversion modeling communities participating in MsTMIP, NASA CMS, and elsewhere, IPCC Task Force on National Greenhouse Gas Inventories (IPCC TFI), GEO, USFS | | Jacob-01 [2012] Use of GOSAT, TES, and Suborbital Observations to Constrain North American Methane Emissions in the Carbon Monitoring System | - Develop a four-dimensional variational (4D-var) inverse modeling capability for methane emissions in North America using satellite (GOSAT, TES), aircraft (CalNex, HIPPO, NOAA/CCGG), and ground-based (TCCON, NOAA/CCGG) data. | Estimates of methane emission fluxes. | North America | 2009 -
present | 1/2° x 2/3°
(~50km x 50km) | Monthly | - Fire management - Air quality protection - GHG emissions inventory - Land management | Air quality agencies at both state and national levels (e.g. EPA, lowa Department of Natural Resources), industry groups (e.g. American Petroleum Institute), US State Department | | Kennedy-01 [2012] Integrating and Expanding a Regional Carbon Monitoring System into the NASA CMS | Create a forest carbon monitoring system using Landsat, airborne Lidar, and field plot data for evaluation of other CMS biomass products. Test the carbon monitoring system (originally developed in western forests) in eastern U.S. forests. | Forest biomass maps. | Washington,
Oregon, and
California | 1990-2010 | 30 m | Annually | - Fire management
- Forest inventory
- Land management
- Invasive species
- Air quality protection | USFS, Oregon Department of Forestry,
Oregon Department of Fish and Wildlife,
Washington State Department of Natural
Resources, California Department of
Forestry and Fire Protection, California
Clean Air Resources Board
 | Kennedy-01 [2012] Integrating and Expanding a Regional Carbon Monitoring System into the NASA CMS | - Test the carbon monitoring
system (originally developed in
western forests) in eastern U.S.
forests. | Maps of forest
disturbance by
agent, severity,
and timing. | Harvard Forest
and environs
(Massachusetts),
Savanna River
Forest and
environs (South
Carolina &
Georgia) | 1990-2010 | 30 m | Annually | - Fire management - Forest inventory - Land management - Invasive species - Air quality protection | USFS, Oregon Department of Forestry,
Oregon Department of Fish and Wildlife,
Washington State Department of Natural
Resources, California Department of
Forestry and Fire Protection, California
Clean Air Resources Board | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | - Develop a database that provides estimates of changes in carbon stocks from fires in the boreal region of Alaska for 2001-2010. | Vegetation cover
classes
(reconstituted
from National
Land Cover
Database, NLCD) | Interior Alaska | 2001-2010 | 60 m | Single time | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense,
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | - Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | Topography
(elevation, slope,
aspect) | Interior Alaska | 2001-2010 | 60 m | Single time | - Fire management
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense,
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | - Develop a database that provides estimates of changes in carbon stocks from fires in the boreal region of Alaska for 2001-2010. | Drainage category | Interior Alaska | 2001-2010 | 60 m | Single time | - Fire management
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense,
National Park Service, and EPA) | | | carbon.nasa.gov Email: | | | | | 1 | Version 1 | Page 21/27 | |---|--|---|---|-------------------------|--------------------|---|---|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Loboda-02
[2012]
The Forest Disturbance
Carbon Tracking System:
A CMS Phase 2 Study | - Develop a database that provides estimates of changes in carbon stocks from fires in the boreal region of Alaska for 2001-2010. | Year of previous fire event | Interior Alaska | 2001-2010 | 60 m | Single time | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | Year of fire during
the 2001-2010 era | Interior Alaska | 2001-2010 | 60 m | Single time | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | Burned area perimeter | Interior Alaska | 2001-2010 | 60 m | Annually | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02
[2012]
The Forest Disturbance
Carbon Tracking System:
A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | Burned/unburned areas within perimeter | Interior Alaska | 2001-2010 | 60 m | Annually | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | Day of burning | Interior Alaska | 2001-2010 | 60 m | Annually | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that provides estimates of changes in carbon stocks from fires in the boreal region of Alaska for 2001-2010. | Meteorological parameters (temperature, relative humidity, wind, precipitation) | Interior Alaska | 2001-2010 | 60 m | Daily, end of
May through
beginning of
September for
the years of
2001 through
2010 | - Fire management
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that provides estimates of changes in carbon stocks from fires in the boreal region of Alaska for 2001-2010. | Fire weather indices (full suite of Canadian Fire Danger Rating System, CFDRS) | Interior Alaska | 2001-2010 | 60 m | Daily, end of
May through
beginning of
September for
the years of
2001 through
2010 | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | TEM-generated carbon content of aboveground biomass | Interior Alaska | 2001-2010 | 1km | Year 2000 | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02 [2012] The Forest Disturbance Carbon Tracking System: A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | TEM-generated carbon content of down woody debris-layer | Interior Alaska | 2001-2010 | 1km | Year 2000 | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02
[2012]
The Forest Disturbance
Carbon Tracking System:
A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | TEM-generated organic soil carbon content | Interior Alaska | 2001-2010 | 1km | Year 2000 | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Loboda-02
[2012]
The Forest Disturbance
Carbon Tracking System:
A CMS Phase 2 Study | Develop a database that
provides estimates of changes in
carbon stocks from fires in the
boreal region of Alaska for 2001-
2010. | Modeled carbon loss from wildfire events | Interior Alaska | 2001-2010 | 1km | Year 2000 | - Fire management
- Forest inventory
- Land management | Federal land management agencies in
Alaska (i.e. USFS, BLM, Fish and
Wildlife Service, Department of Defense
National Park Service, and EPA) | | Lohrenz-04 [2012] Development of Observational Products and Coupled Models of Land-Ocean-Atmospheric Fluxes in the Mississippi River Watershed and Gulf of Mexico in Support of | Develop georeferenced products that quantify land to ocean exchanges of carbon using a combination of
models and remotely-sensed and in situ observations. | Land-ocean
fluxes of carbon
and nitrogen. | Mississippi River Watershed and Gulf of Mexico, including continental margins of Florida and the South Atlantic Bight | 1904-1910,
2004-2010 | 5 arc-minutes | Monthly | - Land management - Global carbon budget calculations - Watershed protection plans - Ocean acidification mitigation | EPA (Mississippi River/Gulf of Mexico
Watershed Nutrient Task Force), NOAA
USGS, US Global Change Research
Program, CMS terrestrial flux teams | | Website: o | arbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 22/27 | |---|---|--|--|--|--------------------|-----------------------|--|--| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Carbon Monitoring Lohrenz-04 [2012] Development of Observational Products and Coupled Models of Land-Ocean-Atmospheric Fluxes in the Mississippi River Watershed and Gulf of Mexico in Support of Carbon Monitoring | - Develop georeferenced products that quantify air to sea exchanges of carbon using a combination of models and remotely-sensed and in situ observations. | Ocean-
atmosphere
fluxes of carbon
dioxide. | Mississippi River
Watershed and
Gulf of Mexico,
including
continental
margins of Florida
and the South
Atlantic Bight | 1904-1910,
2004-2010 | 5 km | Monthly | - Land management - Global carbon budget calculations - Watershed protection plans - Ocean acidification mitigation | EPA (Mississippi River/Gulf of Mexico
Watershed Nutrient Task Force), NOAA,
USGS, US Global Change Research
Program, CMS terrestrial flux teams | | Lohrenz-04 [2012] Development of Observational Products and Coupled Models of Land-Ocean-Atmospheric Fluxes in the Mississippi River Watershed and Gulf of Mexico in Support of Carbon Monitoring | - Develop georeferenced products that quantify coastal to open ocean exchanges of carbon using a combination of models and remotely-sensed and in situ observations. | Continental shelf-
ocean exchanges
of carbon and
nitrogen. | Mississippi River
Watershed and
Gulf of Mexico,
including
continental
margins of Florida
and the South
Atlantic Bight | 1904-1910,
2004-2010 | 5 km | Monthly | - Land management - Global carbon budget calculations - Watershed protection plans - Ocean acidification mitigation | EPA (Mississippi River/Gulf of Mexico
Watershed Nutrient Task Force), NOAA,
USGS, US Global Change Research
Program, CMS terrestrial flux teams | | Lohrenz-04 [2012] Development of Observational Products and Coupled Models of Land-Ocean-Atmospheric Fluxes in the Mississippi River Watershed and Gulf of Mexico in Support of Carbon Monitoring | - Develop georeferenced products that quantify any associated uncertainties with land to ocean, air to sea, and coastal to open ocean exchanges of carbon using a combination of models and remotely-sensed and in situ observations. | Associated uncertainties. | Mississippi River
Watershed and
Gulf of Mexico,
including
continental
margins of Florida
and the South
Atlantic Bight | 1904-1910,
2004-2010 | N/A | N/A | - Land management - Global carbon budget calculations - Watershed protection plans - Ocean acidification mitigation | EPA (Mississippi River/Gulf of Mexico
Watershed Nutrient Task Force), NOAA,
USGS, US Global Change Research
Program, CMS terrestrial flux teams | | Miller-J-01 [2012] In Situ CO2-Based Evaluation of the Carbon Monitoring System Flux Product | - Evaluate the CMS Bowman-01
flux product by using NOAA's in
situ CO2 data. | A comparative evaluation of observed CO2 fluxes and a posteriori modeled CO2 fluxes from a CMS Bowman-01 flux product. | Global | 2009-2011 | Variable | Weekly to
Monthly | - MRV, REDD+ - GHG emissions inventory - Land management | CMS Bowman-01 Flux Product team | | Pawson-01 [2012] GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes | - Develop a comprehensive ("big-
picture") framework that
incorporates all anthropogenic,
terrestrial, oceanic, and
atmospheric fluxes. | Estimates of net terrestrial biospheric CO2 fluxes, including biomass burning. | Global | 2003-2013 | 0.5° x 0.5° | Monthly | - GHG emissions
inventory
- Global carbon
budget calculations
- Land management | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Pawson-01 [2012] GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes | - Develop a comprehensive ("big-
picture") framework that
incorporates all anthropogenic,
terrestrial, oceanic, and
atmospheric fluxes. | Estimates of net oceanic CO2 fluxes. | Global | 1998-2013 | 0.5° x 0.5° | Monthly | - Global carbon
budget calculations
- Ocean acidification
mitigation | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Pawson-01 [2012] GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes | - Examine the propagation of uncertainties in surface fluxes into atmospheric concentrations in addition to the impacts of transport uncertainty on atmospheric CO2 distributions. | Uncertainties associated with terrestrial and oceanic fluxes. | Global | 2003-2013
for terrestrial
1998-2013
for oceanic | 0.5° x 0.5° | Monthly | - GHG emissions
inventory
- Global carbon
budget calculations
- Land management
- Ocean acidification
mitigation | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Pawson-01 [2012] GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes | Examine the propagation of
uncertainties in surface fluxes into
atmospheric concentrations in
addition to the impacts of
transport uncertainty on
atmospheric CO2 distributions. | Assimilated 3D atmospheric fields of CO2 concentrations. | Global | 2003-2016 | 0.5° x 0.5° | Daily | - Global carbon
budget calculations | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Website: o | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | | Updated: M | ay 14, 2015 | Version 1 | Page 23/27 | |--|---|---|---|------------------------|------------------------|---|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | Pawson-01 [2012] GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes | - Examine the propagation of uncertainties in surface fluxes into atmospheric concentrations in addition to the impacts of transport uncertainty on atmospheric CO2 distributions. | Characterization of size and location of regions that impact the ACOS observations. | Global | Updates
forthcoming | Updates
forthcoming | Updates
forthcoming | - Global carbon
budget calculations | CMS flux teams, USGS, EPA, NOAA, GCP, and others who want to run carbon cycle models. | | Saatchi-02 [2012] Prototyping MRV Systems Based on Systematic and Spatial Estimates of Carbon Stock and Stock Changes of Forestlands | - Spatially represent all carbon pools (ABG, BGB, CWD, forest floor,
soil) in forestlands of the United States by integrating remote sensing and GIS techniques with the US forest inventory data. | Maps of all forest
carbon stocks
(aboveground
biomass,
belowground
biomass, coarse
woody debris,
forest floor, and
soil) | CONUS (all
carbon pools) and
Alaska (only AGB
and BGB) | 2000-2010 | 100 m | Forest cover –
2000, 2005,
2010;
Aboveground
biomass –
2000, 2005;
Other carbon
pools – 2000,
2005 | - MRV
- Forest inventory
- Land management | USGS, USFS , EPA, President's
Interagency Climate Change
Adaptation Task Force | | Saatchi-02 [2012] Prototyping MRV Systems Based on Systematic and Spatial Estimates of Carbon Stock and Stock Changes of Forestlands | - Develop a systematic and spatially refined estimate of net forest carbon stock changes (fluxes) between 2000 and 2010 that can be compared to net fluxes derived using the extensive network of FIA plots Develop and prototype an MRV system that tracks emissions and removals of carbon separately to be used for international policy applications with the capability of providing national or sub-national scale baselines of gross and net carbon fluxes and uncertainty, and test its applicability to the State of Alaska, where a GHG inventory is sorely lacking | Maps of net
carbon stock
changes (fluxes). | CONUS and
Alaska | 2000-2010 | 100 m | 2000-2005,
2005-2010 | - MRV
- Forest inventory
- Land management | USGS, USFS , EPA, President's
Interagency Climate Change
Adaptation Task Force | | Saatchi-02 [2012] Prototyping MRV Systems Based on Systematic and Spatial Estimates of Carbon Stock and Stock Changes of Forestlands | Updates forthcoming | Disturbance
layers (time since
disturbance,
recovery rate,
disturbance
severity) | CONUS and
Alaska | Updates forthcoming | Updates
forthcoming | Updates
forthcoming | - MRV
- Forest inventory
- Land management | USGS, USFS , EPA, President's
Interagency Climate Change
Adaptation Task Force | | Shuchman-01 [2012] Development of New Regional Carbon Monitoring Products for the Great Lakes Using Satellite Remote Sensing Data | - Develop new satellite-derived primary production estimate for Great Lakes Conduct historical analysis of primary production and key input parameters (i.e., chlorophyll, KdPAR, and PAR). | Lake-wide
primary
production
estimates for all
five Great Lakes
in the U.S. | Laurentian Great
Lakes | 2002-2014 | 1 km | Annually –
time series for
Lakes
Michigan,
Superior, and
Huron: 2002-
2014
Monthly –
seasonal
analysis for
upper three
Lakes: only
2011 | - Watershed
protection plans
- Global carbon
budget calculations
- Coastal land
management | Michigan Department of Environmental Quality; Great Lakes Observing System (GLOS); US National Park Service; USGS; NOAA; US Coast Guard; EPA Regions 2, 3, & 5; Illinois, Indiana, Michigan, Pennsylvania, New York, Wisconsin, Minnesota, & Ohio Departments of Natural Resources or equivalent agencies; Environment Canada; Great Lakes Fishery Commission | | Verdy-01
[2012]
Towards a 4D-Var
Approach for Estimation of
Air-Sea Carbon Dioxide
Fluxes | - Develop methodology for 4D-
Var data assimilation in a coupled
physical-biogeochemical ocean
model in order to improve air-sea
CO2 flux estimates. | Estimates of the biogeochemical state of the ocean: carbonate system (dissolved inorganic carbon, alkalinity, pH, pCO2), air-sea CO2 fluxes, nutrients, | California coastal ocean | 2007-2010 | 7 km | Monthly and hourly | - Global carbon
budget calculations
- Watershed
protection plans
- Ocean acidification
mitigation | NOAA, EPA, White House Council on
Environmental Quality, any
oceanographer or modeler who needs to
know the global ocean 3-D distribution of
carbon system parameters and tracers
that are not commonly cataloged by
National Oceanographic Data Center | | | carbon.nasa.gov Email: | cms_applications@ | cce.nasa.gov | T | Updated: M | 1 | Version 1 | Page 24/27 | |--|---|---|----------------|-------------|--------------------|-----------------------|--|---| | Project ID /
Award Year / Title | Objectives | Products | Spatial Extent | Time Period | Spatial Resolution | Temporal
Frequency | Application Areas | Potential Users | | | | biological productivity | | | | | | | | Verdy-01
[2012]
Towards a 4D-Var
Approach for Estimation of
Air-Sea Carbon Dioxide
Fluxes | - Compile a calibrated dataset of in-situ ocean observations needed to constrain a global 4D-Var biogeochemical model. | Global Ocean Data Analysis Project version 2 (GLODAPv2), a comprehensive data product of ocean carbon and biogeochemistry observations. | Global | 1973-2013 | 1° | N/A
(climatology) | - Global carbon
budget calculations
- Watershed
protection plans
- Ocean acidification
mitigation | NOAA, EPA, White House Council on
Environmental Quality, any
oceanographer or modeler who needs to
know the global ocean 3-D distribution of
carbon system parameters and tracers
that are not commonly cataloged by
National Oceanographic Data Center | | West-03 [2012] Estimating Global Inventory-Based Net Carbon Exchange from Agricultural Lands for Use in the NASA Flux Pilot Study | - Develop a global gridded
dataset for cropland carbon fluxes
using global- and country-level
inventory data on crop yields. | Gridded data
carbon uptake by
crop. NPP (C per
year) | Global | 2005-2010 | 0.05° | Annually | - GHG emissions inventory - Land management | EPA, USDA Farm Service Agency, CMS flux teams, United Nations Environment Programme – Global Environmental Facility, UNFCCC, FAO, NGOs: World Wildlife Fund, The Nature Conservancy, & Natural Resource Defense Council | | West-03 [2012] Estimating Global Inventory-Based Net Carbon Exchange from Agricultural Lands for Use in the NASA Flux Pilot Study | - Develop a global gridded
dataset for cropland carbon fluxes
using global- and country-level
inventory data on crop yields. | Carbon release by livestock. | Global | 2005-2010 | 0.05° | Annually | - GHG emissions inventory - Land management | EPA, USDA Farm Service Agency,
CMS flux teams, United Nations
Environment Programme – Global
Environmental Facility, UNFCCC, FAO,
NGOs: World Wildlife Fund, The Nature
Conservancy, & Natural Resource
Defense Council | | West-03 [2012] Estimating Global Inventory-Based Net Carbon Exchange from Agricultural Lands for Use in the NASA Flux Pilot Study | - Develop a global gridded
dataset for cropland carbon fluxes
using global- and country-level
inventory data on crop yields. | Carbon release by human. | Global | 2005-2010 | 0.05° | Annually | - GHG emissions inventory - Land management | EPA, USDA Farm Service Agency,
CMS flux teams, United Nations
Environment Programme – Global
Environmental Facility, UNFCCC, FAO,
NGOs: World Wildlife Fund, The Nature
Conservancy, & Natural Resource
Defense Council | | West-03
[2012]
Estimating Global
Inventory-Based Net
Carbon Exchange from
Agricultural Lands for Use
in the NASA Flux Pilot
Study | - Develop a global gridded
dataset for cropland carbon fluxes
using global- and country-level
inventory data on crop yields. | Estimates of carbon fluxes for agricultural lands: combination of uptake by crop, release by livestock, and release by human. | Global | 2005-2010 | 0.05° | Annually | - GHG emissions
inventory
- Land management | EPA, USDA Farm Service Agency,
CMS flux teams, United Nations
Environment Programme – Global
Environmental Facility, UNFCCC, FAO,
NGOs: World Wildlife Fund, The Nature
Conservancy, & Natural Resource
Defense Council | | West-03
[2012]
Estimating Global
Inventory-Based Net
Carbon Exchange from
Agricultural Lands for Use
in the NASA Flux Pilot
Study | - Provide land cover projections that can be used to derive spatially explicit estimates of potential shifts in croplands, grasslands, shrub lands, and forest lands in various future climate scenarios. | Land cover projections (5.6-km) from GCAM v3.1 under 3 different scenarios: 1) no explicit climate mitigation efforts 2) low emission with a mid-century peak in radiative forcing 3) stabilized radiative forcing at 4.5 W/m2. | CONUS | 2005-2095 | 0.05° (~5.6 km) | Annually | - GHG emissions
inventory
- Land management | carbon cycle scientists, those interested in climate change and land cover change | Website: carbon.nasa.gov Email: cms_applications@cce.nasa.gov Updated: May 14, 2015 Version 1 Page 25/27 ## **Key: Fact Sheet Categories** | Category | Explanation | |-------------------------------------
--| | Award Year | The year the funding was granted | | Project ID | Principal Investigator's last name and project # | | Objectives | Goals that the project seeks to attain by developing data and products | | Science Theme | Type of data and products, according to components of carbon cycle research that are most relevant: Global Flux, Ocean-Atmosphere Flux, Land-Ocean Flux, Land Biomass, Ocean Biomass, Lake Biomass, MRV, and Decision Support | | Products Keywords | Keywords that will help stakeholders identify data and products appropriate to their needs. See below for a table that explains each product keyword. | | Data Products | A description of output data and products that will be publicly available upon completion of the project | | Spatial Extent | The geographical area that the data and products cover | | Coordinates | Coordinates can be approximate. They can be the center of Spatial Extent or study sites. Shape files are welcome. | | Time Period | The time period that the data and products cover | | Spatial Resolution | Finest spatial resolution of data and products | | Temporal Frequency | Time intervals of data products | | Input Data Products | Any satellite, airborne, field, and modeled data products used. If airborne Lidar data was used, please indicate where, when, which instruments, and how much data (area, dimensions, or number and length of lines). | | Algorithm/Models Used | Any algorithm or models used to develop data and products | | Evaluation | Any efforts to evaluate the accuracy, robustness, and/or performance of data and products | | Intercomparison Efforts/Gaps | Any key intercomparison effort(s) that have been undertaken or gaps where future intercomparison efforts are warranted | | Uncertainty Estimates | Plans to quantify data uncertainty, if any | | Uncertainty Categories | 1. Ensemble (e.g. stochastic), 2. Deterministic, 3. Model-Data Comparison, 4. Model-Model Comparison, and/or 5. Data-Data Comparison | | Application Areas | Areas with policy or societally relevant decision processes, which may benefit from the usage of data and products | | Potential Users | Possible end users of data and products once fully developed. Bold indicates existing communication between the CMS product developers and the end users. Specific points of contact for these end users are listed between asterisks. | | Application Readiness Level (ARL) | The NASA index that assesses applications potential of data and products in operational settings. <u>Detailed explanation</u> . Principal Investigators specified the ARLs of their own projects | | Future Developments | Future plans to engage stakeholders, share data and products, and raise awareness of the product development efforts | | Limitations | Any shortcoming of data and products that users must be aware of | | Date When Data/Product
Available | The date (MM/DD/YY – if possible) on which data and products will be made publicly available | | Data Server URL | The URL address where a user may access data and products | | Metadata URL | The URL address where a user may access metadata | | Archived Data Citation | Citation of data and product(s) that users can include in their references | | Publications | A list of journal publications that directly resulted from CMS funding | ## **Acronyms List** | AGB Aboveground biomass ARL NASA Application Readiness Level BGB Belowground biomass BLM U.S. Bureau of Land Management CA-AB32 California Assembly Bill 32: Global Warming Solutions Act CAA U.S. Clean Air Act CAP President Obama's Climate Action Plan of 2013 CarboNA Carbon North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon monoxide CO3 Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DDE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GCP Global Carbon Project GCO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP Intergovernmental Panel on Climate Change | ACOS | Atmospheric CO2 Observations from Space Task | |--|------------|--| | BGB Belowground biomass BLM U.S. Bureau of Land Management CA-AB32 California Assembly Bill 32: Global Warming Solutions Act CAA U.S. Clean Air Act CAP President Obama's Climate Action Plan of 2013 CarbonNA Carbon North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CO3 Corbon Solutide CO3 Corbon Solutide CO4 CO5 Corbon Monitoring System Initiative CMS NASA Carbon Monitoring System Initiative CMA U.S. Clean Water Act DDE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Coean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCO Group on Earth Observations GO-SHIP Global Carbon Project GCO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | AGB | Aboveground biomass | | BLM U.S. Bureau of Land Management CA-AB32 California Assembly Bill 32: Global Warming Solutions Act CAA U.S. Clean Air Act CAP President Obama's Climate Action Plan of 2013 CarboNA Carbon North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CO3 Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Coean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GCO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | ARL | NASA Application Readiness Level | | CA-AB32 California Assembly Bill 32: Global Warming Solutions Act CAA U.S. Clean Air Act CAP President Obama's Climate Action Plan of 2013 CarboNA Carbon North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CONUS Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Coean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GCO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | BGB | Belowground biomass | | CAA U.S. Clean Air Act CAP President Obama's Climate Action Plan of 2013 CarboNA Carbon
North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CO3 Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Coean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Coordination Project | BLM | U.S. Bureau of Land Management | | CAP President Obama's Climate Action Plan of 2013 CarboNA Carbon North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CO3 Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GCO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CA-AB32 | California Assembly Bill 32: Global Warming Solutions Act | | CarbonNA Carbon North America, formerly the Joint North American Carbon Program (JNACP) CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CONUS Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CAA | U.S. Clean Air Act | | CH4 Methane CO Carbon monoxide CO2 Carbon dioxide CONUS Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CAP | President Obama's Climate Action Plan of 2013 | | CO Carbon monoxide CO2 Carbon dioxide CONUS Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Coean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Coordination Project | CarboNA | Carbon North America, formerly the Joint North American Carbon Program (JNACP) | | CO2 Carbon dioxide CONUS Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CH4 | Methane | | CONUS Contiguous United States, 48 states below Canada and above Mexico CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CO | Carbon monoxide | | CMS NASA Carbon Monitoring System Initiative CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CO2 | Carbon dioxide | | CWA U.S. Clean Water Act DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CONUS | Contiguous United States, 48 states below Canada and above Mexico | | DOE U.S. Department of Energy Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | CMS | NASA Carbon Monitoring System Initiative | | Doha/Kyoto Doha Amendment to the Kyoto Protocol EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon
Coordination Project | CWA | U.S. Clean Water Act | | EPA U.S. Environmental Protection Agency FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | DOE | U.S. Department of Energy | | FAO Food and Agriculture Organization of United Nations FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | Doha/Kyoto | Doha Amendment to the Kyoto Protocol | | FIA Forest Inventory and Analysis of the U.S. Forest Service FLPMA U.S. Federal Land Policy and Management Act FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | EPA | U.S. Environmental Protection Agency | | FLPMA U.S. Federal Land Policy and Management Act U.S. Federal Ocean Acidification Research and Monitoring Act Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP GOSAT Greenhouse gases Observing SATellite ICESat-2 ICE, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | FAO | Food and Agriculture Organization of United Nations | | FORAM U.S. Federal Ocean Acidification Research and Monitoring Act FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | FIA | Forest Inventory and Analysis of the U.S. Forest Service | | FPP Carbon Monitoring System Flux Pilot Project GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | FLPMA | U.S. Federal Land Policy and Management Act | | GCP Global Carbon Project GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | FORAM | U.S. Federal Ocean Acidification Research and Monitoring Act | | GEO Group on Earth Observations GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | FPP | Carbon Monitoring System Flux Pilot Project | | GO-SHIP Global Ocean Ship-based Hydrographic Investigations Program GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | GCP | Global Carbon Project | | GOSAT Greenhouse gases Observing SATellite ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | GEO | Group on Earth Observations | | ICESat-2 Ice, Cloud, and land Elevation Satellite-2 INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | GO-SHIP | Global Ocean Ship-based Hydrographic Investigations Program | | INCAS Indonesian National Carbon Accounting System IOCCP International Ocean Carbon Coordination Project | GOSAT | Greenhouse gases Observing SATellite | | IOCCP International Ocean Carbon Coordination Project | ICESat-2 | Ice, Cloud, and land Elevation Satellite-2 | | , | INCAS | Indonesian National Carbon Accounting System | | IPCC Intergovernmental Panel on Climate Change | IOCCP | International Ocean Carbon Coordination Project | | | IPCC | Intergovernmental Panel on Climate Change | 27/27 Page ## **Acronyms List** Website: carbon.nasa.gov | IPCC GPG | IPCC Good Practice Guide for Land Use, Land-Use Change, and Forestry | |-----------------------------|---| | IPCC TFI | IPCC Task Force on National Greenhouse Gas Inventories | | LAPAN | Indonesia National Aerospace Institute | | MRP | Mega Rice Project | | MRV | UN-REDD+ Measurement, Reporting, and Verification of carbon emissions reductions | | MsTMIP | Multi-Scale Synthesis and Terrestrial Model Intercomparison Project | | NACP | North American Carbon Program | | NALS | North American Leaders' Declaration on Climate Change and Clean Energy | | NASA | U.S. National Aeronautics and Space Administration | | NFMS | National Forest Monitoring System | | NGHGI | National Greenhouse Gas Inventory | | NMHC | Non-methane hydrocarbon | | NOAA | U.S. National Oceanic and Atmospheric Administration | | OCO-2 | Orbiting Carbon Observatory-2 | | PM2.5 (or PM10) | Particulate matter sized 2.5 (10) micrometers or smaller | | REDD+ | United Nations Collaborative Programme on Reducing Emissions from Deforestation and | | | Forest Degradation in Developing Countries | | RGGI | U.S. Regional Greenhouse Gas Initiative | | UNFCCC | United Nations Framework Convention on Climate Change | | US-Indonesia
Partnership | U.SIndonesia Partnership on Climate Change and Clean Energy | | US-Mexico Bilateral | U.SMexico Bilateral Framework on Clean Energy and Climate Change | | USAID | U.S. Agency for International Development | | USCCSP | U.S. Carbon Cycle Science Program | | USDA | U.S. Department of Agriculture | | USFS | U.S. Department of Agriculture Forest Service | | USGS | U.S. Geological Survey | | XCO2 or XCH4 | Column-averaged dry air mole fractions of atmospheric CO2 or CH4 |